Study on morphology and property of PVDF hybrid membrane modified by functionalized TiO2 nanotubes |
Authors: SONG Xue1, WEN Chen1, SUN Wei1, XIAO Changfa2 |
Units: 1. School of Environmental and Chemical Engineering, Tianjin Polytechnic University; 2. State Key Laboratory of Membrane Materials and Processes, Tianjin 300160, China |
KeyWords: TiO2 nanotubes;polyvinylidence fluoride;hybrid membrane;hydrophilicity;green cleaning |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2012,32(4):11-16 |
Abstract: |
The PVDF/FTNT hybrid ultrafiltration membranes were prepared by phase-inversion method with functionalized TiO2 nanotubes(FTNT) dispersed uniformly in the PVDF casting solution. The microstructure, separation performance and antifouling ability of such PVDF/FTNT hybrid membranes were investigated using SEM, contact angle, cross flow filtration, and antifouling measurements, and efficient cleaning methods for the fouled membrane were also observed in detail. The results indicate that the hybrid membranes exhibit differences in microstructure and properties due to a certain content of functionalized TiO2 nanotubes addition. At mass fraction 1% FTNT, the thickness of skin layer decreased while fine interfacial micropores increased, meanwhile the hybrid membrane had excellent water permeability, hydrophilicity, anticompaction and good antifouling ability with somewhat elevated retention for HA solution. In addition, chemical cleaning with 0.01mol/L NaOH and sunlight/water cleaning could effectively recover the permeance of membrane, and using the latter the flux recovery of hybrid membranes achieved above 90%. |
Funds: |
国家自然科学基金(51073120);天津市科技计划项目(10SYSYJC27900) |
AuthorIntro: |
宋雪(1987-10),女,湖北武汉人,硕士研究生,主要从事膜材料和水处理研究,E-mail:songxue1020@163.com |
Reference: |
[1] Li J H, Xu Y Y, Zhu L P. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance [J]. J Membr Sci, 2009, 326: 659–666. [2] Su J O, Nowon K, Yong T L. Preparation and characterization of PVDF/TiO2 organic–inorganic composite membranes for fouling resistance improvement [J]. J Membr Sci, 2009, 345: 13–20. [3] Hou W X, Wang Q H. UV-Driven Reversible Switching of a Polystyrene/Titania Nanocomposite Coating between Superhydrophobicity and Superhydrophilicity [J]. Langmuir, 2009, 25: 6875–6879. [4] Arthanareeswarana G, Thanikaivelan P. Fabrication of cellulose acetate–zirconia hybrid membranes for ultrafiltration applications: Performance, structure and fouling analysis [J]. Sep Purif Technol, 2010, 74: 230–235. [5] Shen J N, Ruan H M, Wu L G, et al. Preparation and characterization of PES–SiO2 organic–inorganic composite ultrafiltration membrane for raw water pretreatment [J]. Chem Eng J, 2011, 168: 1272–1278. [6] 芦 艳,孟丽丽,于水利,等. 纳米Al2O3改性PVDF超滤膜处理含油污水研究[J]. 安全与环境学报,2008,8 (4):62–64. [7] 孙丽华,李 星,杨艳玲,等. 浸没式超滤膜处理地表水的膜污染影响因素试验研究[J]. 给水排水,2009,35 (4):18–22. [8] 周春飞,黄瑾辉,曾光明,等. 胶团强化超滤处理难降解有机污染物废水[J]. 膜科学与技术,2010,30 (5):113–118. [9] Monique B, Burkhard L, Long D N. Membrane fouling and chemical cleaning in water recycling applications [J]. Desalination, 2010, 250: 977–981. [10] Celik E, Park H, Choi H. Carbon nanotube blended polyethersulfone membranes or fouling control in water treatment [J]. Water Research, 2011, 45: 274–282. [11] Tao F F, Gao C L, Wen Z H, et al. Cobalt oxide hollow microspheres with micro-and nano-scale composite structure: Fabrication and electrochemical performance [J]. J Solid State Chem, 2009, 182: 1055–1060. [12] Hou Y N, Qu J H, Zhao X, et al. Electro-photocatalytic degradation of acid orange II using a novel TiO2/ACF photoanode [J]. Science of the Total Environment, 2009, 407: 2431-2439. [13] Wei Y, Chu H Q, Dong B Z, et al. Effect of TiO2 nanowire addition on PVDF ultrafiltration membrane performance [J]. Desalination, 2011, 272: 90–97. [14] Mario M C, Jorge R S, Rodolfo Z. CO oxidation on gold nanoparticles supported over titanium oxide nanotubes [J]. Catalysis Today, 2011, 166: 172–179. [15] Anandan S, Kathiravan K, Ikuma Y. Anionic(IO3-) non-metal doped TiO2 nanoparticles for the photocatalytic degradation of hazardous pollutant in water [J]. Catalysis Communications, 2009, 10: 1014–1019. [16] Boributh S, Chanachai A, Jiraratananon R. Modification of PVDF membrane by chitosan solution for reducing protein fouling [J]. J Membr Sci, 2009, 342: 97–104. [17] Astudillo C, Parra J, González S, et al. A new parameter for membrane cleaning evaluation [J]. Sep Purif Technol, 2010, 73: 286–293. [18] Song S, Tu J J, He Z Q. Visible light-driven iodine-doped titanium dioxide nanotubes prepared by hydrothermal process and post-calcination [J]. Applied Catalysis A: General, 2010, 378: 169–174. [19] Li J F, Xu Z L, Yang H. Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane [J]. Appl Surf Sci, 2009, 255: 4725–4732. [20] Mansourpanah Y, Madaeni S S, Rahimpour A, et al. Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photocatalyst: performance, characterization and fouling-resistant capability [J]. J Membr Sci, 2009, 330: 297–306. [21] Razmjou A, Mansouri J, Chen V. The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry,structure and fouling performance of PES ultrafiltration membranes [J]. J Membr Sci, 2011, 378: 73–84. [22] Wu G P, Gan S Y, Cui L G, et al. Preparation and Characterization of PES/TiO2 composite membranes [J]. Appl Surf Sci, 2008, 254: 7080–7086. [23] Laine J M, Campos C, Baudin I. Understanding membrane fouling: a review of over a decade of research [J]. Water Sci Technol, 2003, 3: 155–164. [24] Syafei A D, Lin C F, Wu C H. Removal of natural organic matter by ultrafiltration with TiO2-coated membrane under UV irradiation [J]. J Colloid Interface Sci, 2008, 323: 112–119. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号