Three-stage model of gas membrane separation based on least squares support vector machine |
Authors: LI Guixiang1, WANG Lei1, 3*, WANG Yuanqi2, LI Jiding3 |
Units: 1College of Information Science & Technology, Hainan University, Haikou 570228, China;2Dalian YuMing Senior High School, Dalian 116023, China;3The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China |
KeyWords: gas membrane separation technology; least squares support vector machine; three-stage; on-line detection; real-time optimal control |
ClassificationCode:TP183 |
year,volume(issue):pagination: 2013,33(6):71-77 |
Abstract: |
A three-stage intelligent model of gas membrane separation process was proposed, and was applied to analysis the key performance parameters of hydrogen recovery membrane separation process in real time. Firstly, combined grid search and cross validation with bayes estimation were used to obtain the optimal value of two important parameters (i.e.,sig2 and gam ) of least squares support vector machine; then, three-stage model of hydrogen recovery membrane separation process based on least squares support vector machine was built. Finally, modeling program was wrote based on Matlab2010a and field data, and the key performance parameters of hydrogen recovery membrane separation process was predicted and analysis on-line. The simulation results show that the model is reasonable, its convergence speed is very fast, and the prediction results of the model are in good agreement with the measurement values with reasonable errors. It well reflects the good separation performance of the membrane module of the three-stage membrane process. This study has a great significance for the research of on-line detection of important performance parameters and its optimal control in the gas membrane separation process. |
Funds: |
海南省自然科学基金(211012);国家科技支撑计划课题(2012BAA10B03);国家973项目(2009CB623404);国家自然科学项目基金(20736003,21176135) |
AuthorIntro: |
李桂香(1988-),女,湖南永州人,硕士, 研究方向:智能检测。通讯作者:王磊(1966-),男, 辽宁大连人,博士, 高级工程师, 研究方向:绿色分离过程与优化控制系统、低碳节能技术及产业化。E-mail: wanglei0520@126.com |
Reference: |
[1] Koros W J. Some opportunities & challenges for our membrane community to consider-with an Emphasis on gas separations [J]. Membrane Science and Technology, 2006, 26(4): 1~5. [2] 张广信, 郑邦婞, 于京鑫, 等. 膜分离技术用于气体脱湿的研究现状[J]. 化工科技, 2010, 18(5): 73~76. [3] 陈麟风. 膜分离技术概述[J]. 能源与环境, 2011, 2: 91. [4] 王建宏, 陈家庆, 曹建树. 加油站膜分离烃类VOCs回收技术分析[J]. 膜科学与技术, 2009, 29(3): 93~97. [5] 孙翀, 李洁, 孙丽艳, 等. 气体膜分离混合气中二氧化碳的研究进展[J]. 现代化工, 2011, 31(1): 19~23. [6] 张菀乔, 张雷, 廖礼, 等. 气体分离膜技术的应用[J]. 天津化工, 2008, 22(3): 21~22. [7] Wang Lei, Shao Cheng, Wang Hai,et al. Radial Basis Function Neural Networks-Based Modeling of the Membrane Separation Process: Hydrogen Recovery from Refinery Gases [J]. Journal of Natural Gas Chemistry, 2006, 15(3): 230~234. [8] 李桂香, 王磊, 李继定, 等. 基于主元分析的气体膜分离过程RBFNN建模[J]. 系统仿真学报, 2012, 24(9): 2003~2006. [9] 王磊. 膜分离过程的优化与控制方法研究[D]. 大连: 大连理工大学, 2006. [10] Suykens J A K, Vandewalle,J. Least squares support vector machine classifiers, Neural processing letters, 1999, 9: 293~300. [11] 陶少辉. 最小二乘支持向量机的改进及其在化学化工中的应用[D]. 浙江: 浙江大学, 2006. [12] 黄银蓉, 张绍德. MIMO最小二乘支持向量机污水处理在线软测量研究[J]. 自动化与仪器仪表, 2010, 4: 15~17. [13] 张宏建, 孙志强. 现代检测技术[M]. 北京: 化学工业出版社, 2009: 59~68. [14] Shang Tianfeng, Geng Zhiqiang. Online Operation Optimization based on GA-RBF Network in Ethylene Cracking Furnace [C]// IEEE, 2010. USA: IEEE, 2012: 624~627. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号