Position:Home >> Abstract

The Preparation and Modification of Hemodialysis Membrane materials and Hemodialyzer
Authors: Yu Xuemin1,Zhu Lijin1,Gao Ailin1,Wang Linghui2,Xue Lixin1,Liu Fu1*
Units: 1.Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; 2.School of Chemical Engineering, Ningbo University of Technology, Ningbo, 315016, China
KeyWords: hemodialysis; hemodialysis membrane; bio-based polymer; hemocompatibility; hemodialyzer
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2015,35(4):110-122

Abstract:
Hemodialysis is the main treating technique for renal failure, and the clinical effect is dramatically affected by dialysis membranes. The present paper introduced the mechanism of hemodialysis, the classification and development of membranes. Meanwhile, the hemocompatibility and modification of membranes, including anticoagulation, oxidative stress, complement activation, were discussed in detail. Besides, the configuration and history of hemodialyzer were also illustrated.
 

Funds:
国家自然科学基金(51473177, 51273211

AuthorIntro:
俞学敏(1991-),女,浙江宁波人,硕士生,从事膜材料制备及应用研究。

Reference:
[1] Jacob, A.I., G. Gavellas, R. Zarco, et al. Leukopenia, hypoxia, and complement function with different hemodialysis membranes. [J]. Kidney international, 1980. 18(4).
[2] Von Baeyer, H., A. Lajous-Petter, W. Debrandt, et al. Surface reactions on blood contact during haemodialysis and haemofiltration with various membrane types. [J]. Journal of Membrane Science, 1988. 36 215-229.
[3]  Ebert, K.O.a.K. Membranen: Grundlagen, Verfahren und industrielle Anwendungen. [M].John Wiley & Sons:2012
[4]  Liu, P.-S., Q. Chen, S.-S. Wu, et al. Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. [J]. Journal of Membrane Science, 2010. 350(1) 387-394.
[5]  Wibowo, A.C., M. Misra, H.-M. Park, et al. Biodegradable nanocomposites from cellulose acetate: mechanical, morphological, and thermal properties. [J]. Composites Part A: Applied Science and Manufacturing, 2006. 37(9) 1428-1433.
[6]  Ran, F., S. Nie, W. Zhao, et al. Biocompatibility of modified polyethersulfone membranes by blending an amphiphilic triblock co-polymer of poly(vinyl pyrrolidone)-b-poly(methyl methacrylate)-b-poly(vinyl pyrrolidone). [J]. Acta Biomater, 2011. 7(9) 3370-81.
[7]  Nie, S., J. Xue, Y. Lu, et al. Improved blood compatibility of polyethersulfone membrane with a hydrophilic and anionic surface. [J]. Colloids Surf B Biointerfaces, 2012. 100 116-25.
[8]  Ran, F., S. Nie, J. Li, et al. Heparin-Like Macromolecules for the Modification of Anticoagulant Biomaterials. [J]. Macromolecular Bioscience, 2012. 12(1) 116-125.
[9]  Li, L., C. Cheng, T. Xiang, et al. Modification of polyethersulfone hemodialysis membrane by blending citric acid grafted polyurethane and its anticoagulant activity. [J]. Journal of Membrane Science, 2012. 405-406 261-274.
[10]  Idris, A. and L.K. Yet. The effect of different molecular weight PEG additives on cellulose acetate asymmetric dialysis membrane performance. [J]. Journal of Membrane Science, 2006. 280(1-2) 920-927.
[11] Fang, B., Q. Ling, W. Zhao, et al. Modification of polyethersulfone membrane by grafting bovine serum albumin on the surface of polyethersulfone/poly (acrylonitrile-co-acrylic acid) blended membrane. [J]. Journal of Membrane Science, 2009. 329(1) 46-55.
[12] Hasegawa, T., Y. Iwasaki and K. Ishihara. Preparation and performance of protein-adsorption-resistant asymmetric porous membrane composed of polysulfone/phospholipid polymer blend. [J]. Biomaterials, 2001. 22(3) 243-251.
[13] Ishihara, K., K. Fukumoto, Y. Iwasaki, et al. Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. [J]. Biomaterials, 1999. 20(17) 1553-1559.
[14] Susanto, H. and M. Ulbricht. Photografted thin polymer hydrogel layers on PES ultrafiltration membranes: characterization, stability, and influence on separation performance. [J]. Langmuir, 2007. 23(14) 7818-7830.
[15] Ulbricht, M., H. Matuschewski, A. Oechel, et al. Photo-induced graft polymerization surface modifications for the preparation of hydrophilic and low-proten-adsorbing ultrafiltration membranes. [J]. Journal of Membrane Science, 1996. 115(1) 31-47.
[16] Zhu, L.-P., Z. Yi, F. Liu, et al. Amphiphilic graft copolymers based on ultrahigh molecular weight poly (styrene-maleic anhydride) with poly (ethylene glycol) side chains for surface modification of polyethersulfone membranes. [J]. European Polymer Journal, 2008. 44(6) 1907-1914.
[17] Li, J., X.J. Huang, J. Ji, et al. Covalent heparin modification of a polysulfone flat sheet membrane for selective removal of low-density lipoproteins: a simple and versatile method. [J]. Macromol Biosci, 2011. 11(9) 1218-26.
[18] Yue, W.-W., H.-J. Li, T. Xiang, et al. Grafting of zwitterion from polysulfone membrane surface-initiated ATRP with enhanced antifouling property and biocompatibility. [J]. Journal of Membrane Science, 2013. 446 79-91.
[19] Su, B.-H., Y. Shi, P. Fu, et al. Clinical evaluation of polyethersulfone high-flux hemodialysis membrane compared to other membranes. [J]. Journal of Applied Polymer Science, 2012. 124(S1) E91-E98.
[20] 刘霆和余喜讯. 聚醚砜中空纤维膜血浆分离器血浆分离功能与血液相容性 [J]. 生物医学工程学杂志, 2000. 17(3) 249-254.
[21] Su, B.-h., P. Fu, Q. Li, et al. Evaluation of polyethersulfone highflux hemodialysis membrane in vitro and in vivo. [J]. Journal of Materials Science: Materials in Medicine, 2008. 19(2) 745-751.
[22] Nguyen, Q.T., L. Le Blanc and J. Neel. Preparation of membranes from polyacrylonitrile—polyvinylpyrrolidone blends and the study of their behaviour in the pervaporation of water—organic liquid mixtures. [J]. Journal of membrane science, 1985. 22(2) 245-255.
[23] Nishio, Y., S.K. Roy and R. Manley. Blends of cellulose with polyacrylonitrile prepared from N-dimethylacetamide-lithium chloride solutions. [J]. Polymer, 1987. 28(8) 1385-1390.
[24] Islam, M., R. Stoicheva and A. Dimov. An investigation on the deformational properties of porous poly (vinyl chloride) and co-poly (butadiene-acrylonitrile) blend membranes. [J]. Journal of membrane science, 1996. 118(1) 9-15.
[25] Goldman, M., M. Lagmiche, M. Dhaene, et al. Adsorption of beta 2-microglobulin on dialysis membranes: comparison of different dialyzers and effects of reuse procedures. [J]. The International journal of artificial organs, 1989. 12(6) 373.
[26] Zingraff, J., P. Beyne, P. Urena, et al. Influence of Haemodialysis Membranes on β2-Microlobulin Kinetics: In Vivo and In Vitro Studies. [J]. Nephrology Dialysis Transplantation, 1988. 3(3) 284-290.
[27] Bouman, C.S., R.W. van Olden and C.P. Stoutenbeek. Cytokine filtration and adsorption during pre-and postdilution hemofiltration in four different membranes. [J]. Blood purification, 1999. 16(5) 261-268.
[28] Urena, P., A. Herbelin, J. Zingraff, et al. Permeability of cellulosic and non-cellulosic membranes to endotoxin subunits and cytokine production during in-vitro haemodialysis. [J]. Nephrology Dialysis Transplantation, 1992. 7(1) 16-28.
[29] Chanard, J., S. Lavaud, C. Randoux, et al. New insights in dialysis membrane biocompatibility: relevance of adsorption properties and heparin binding. [J]. Nephrology Dialysis Transplantation, 2003. 18(2) 252-257.
[30] Chanard, J., S. Lavaud, H. Maheut, et al. The clinical evaluation of low-dose heparin in haemodialysis: a prospective study using the heparin-coated AN69 ST membrane. [J]. Nephrology Dialysis Transplantation, 2008. 23(6) 2003-2009.
[31] Aucella, F., M. Vigilante, A. Gesuete, et al. Uraemic itching: do polymethylmethacrylate dialysis membranes play a role. [J]. Nephrology Dialysis Transplantation, 2007. 22(suppl 5) v8-v12.
[32] Yamashita, A.C. and N. Tomisawa. Membrane materials for blood purification in critical care. [J]. 2010.
[33] Yamashita, A.C. and N. Tomisawa. Importance of membrane materials for blood purification devices in critical care. [J]. Transfusion and Apheresis Science, 2009. 40(1) 23-31.
[34] Zaoui, P.M., W.J. Stone and R.M. Hakim. Effects of dialysis membranes on betaβ2-microglobulin production and cellular expression. [J]. Kidney international, 1990. 38(5).
[35] Sirolli, V., E. Ballone, S. Di Stante, et al. Cell activation and cellular-cellular interactions during hemodialysis: effect of dialyzer membrane. [J]. The International journal of artificial organs, 2002. 25(6) 529-537.
[36] 张国栋, 杨纪元, 冯新德, 等. 聚乳酸的研究进展. [J]. 化学进展, 2000. 12(1) 89-102.
[37] Tanaka, T. and D.R. Lloyd. Formation of poly (L-lactic acid) microfiltration membranes via thermally induced phase separation. [J]. Journal of membrane science, 2004. 238(1) 65-73.
[38] Tanaka, T., T. Nishimoto, K. Tsukamoto, et al. Formation of depth filter microfiltration membranes of poly (l-lactic acid) via phase separation. [J]. Journal of Membrane Science, 2012. 396 101-109.
[39] Moriya, A., T. Maruyama, Y. Ohmukai, et al. Preparation of poly (lactic acid) hollow fiber membranes via phase separation methods. [J]. Journal of Membrane Science, 2009. 342(1) 307-312.
[40] Moriya, A., P. Shen, Y. Ohmukai, et al. Reduction of fouling on poly (lactic acid) hollow fiber membranes by blending with poly (lactic acid)–polyethylene glycol–poly (lactic acid) triblock copolymers. [J]. Journal of Membrane Science, 2012. 415 712-717.
[41] Bettahalli, N., H. Steg, M. Wessling, et al. Development of poly (L-lactic acid) hollow fiber membranes for artificial vasculature in tissue engineering scaffolds. [J]. Journal of Membrane Science, 2011. 371(1) 117-126.
[42] Gao, A., F. Liu and L. Xue. Preparation and evaluation of heparin-immobilized poly (lactic acid)(PLA) membrane for hemodialysis. [J]. Journal of Membrane Science, 2014. 452 390-399.
[43] 高爱林, 刘富和薛立新. 生物基聚乳酸微孔膜的制备及透析性能. [J]. 膜科学与技术, 2013. 33(4) 28-34.
[44] Park, J.Y., M.H. Acar, A. Akthakul, et al. Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes. [J]. Biomaterials, 2006. 27(6) 856-65.
[45] Liu, T.Y., W.C. Lin, L.Y. Huang, et al. Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane. [J]. Biomaterials, 2005. 26(12) 1437-44.
[46] Wang, L., Y. Cai, Y. Jing, et al. Route to hemocompatible polyethersulfone membranes via surface aminolysis and heparinization. [J]. Journal of colloid and interface science, 2014. 422 38-44.
[47] Wang, L., Y. Cui, N. Wang, et al. Aminolytic depolymerization of polyarylsulfones. [J]. Polymer Degradation and Stability, 2014. 103 69-74.
[48] Wang, L., J. Wang, X. Gao, et al. A facile transetherification route to polysulfone-poly (ethylene glycol) amphiphilic block copolymers with improved protein resistance. [J]. Polymer Chemistry, 2014. 5(8) 2836-2842.
[49] Kung, F.-C. and M.-C. Yang. Effect of conjugated linoleic acid immobilization on the hemocompatibility of cellulose acetate membrane. [J]. Colloids and Surfaces B: Biointerfaces, 2006. 47(1) 36-42.
[50] Kung, F.C. and M.C. Yang. Effect of conjugated linoleic acid grafting on the hemocompatibility of polyacrylonitrile membrane. [J]. Polymers for advanced technologies, 2006. 17(6) 419-425.
[51] Kung, F.C. and M.C. Yang. The effect of covalently bonded conjugated linoleic acid on the reduction of oxidative stress and blood coagulation for polysulfone hemodialyzer membrane. [J]. Int J Biol Macromol, 2006. 38(3-5) 157-64.
[52] Kung, F.C., J.J. Chang and M.C. Yang. The reduction of oxidative stress, anticoagulation of platelets, and inhibition of lipopolysaccharide by conjugated linoleic acid bonded on a polysulfone membrane. [J]. Polymers for Advanced Technologies, 2007. 18(4) 286-291.
[53] 刘成梅, 冯妹元, 刘伟, 等. 天然维生素 E 及其抗氧化机理. [J]. 食品研究与开发, 2006. 26(6) 205-208.
[54] Sasaki, M., N. Hosoya and M. Saruhashi. Vitamin E modified cellulose membrane. [J]. Artificial organs, 2000. 24(10) 779-789.
[55] Floridi, A., M. Piroddi, F. Pilolli, et al. Analysis method and characterization of the antioxidant capacity of vitamin E-interactive polysulfone hemodialyzers. [J]. Acta biomaterialia, 2009. 5(8) 2974-2982.
[56] Sasaki, M. Development of vitamin E-modified polysulfone membrane dialyzers. [J]. Journal of Artificial Organs, 2006. 9(1) 50-60.
[57] Dahe, G.J., R.S. Teotia, S.S. Kadam, et al. The biocompatibility and separation performance of antioxidative polysulfone/vitamin E TPGS composite hollow fiber membranes. [J]. Biomaterials, 2011. 32(2) 352-65.
[58] Yamamoto, K.-i., M. Matsuda, M. Okuoka, et al. Antioxidation property of vitamin E-coated polysulfone dialysis membrane and recovery of oxidized vitamin E by vitamin C treatment. [J]. Journal of Membrane Science, 2007. 302(1) 115-118.
[59] Weerakody, R., P. Fagan and S.L. Kosaraju. Chitosan microspheres for encapsulation of α-lipoic acid. [J]. International journal of pharmaceutics, 2008. 357(1) 213-218.
[60] Kofuji, K., T. Isobe and Y. Murata. Controlled release of alpha-lipoic acid through incorporation into natural polysaccharide-based gel beads. [J]. Food chemistry, 2009. 115(2) 483-487.
[61] Trombino, S., R. Cassano, E. Bloise, et al. Design and synthesis of cellulose derivatives with antioxidant activity. [J]. Macromolecular bioscience, 2008. 8(1) 86-95.
[62] Jansen, J.C., R. Cassano, S. Trombino, et al. Polymeric membranes with antioxidant activity based on cellulose esters and poly (vinylidene fluoride)/cellulose ester blends. [J]. Cellulose, 2011. 18(2) 359-370.
[63] Mahlicli, F.Y. and S.A. Altinkaya. Immobilization of alpha lipoic acid onto polysulfone membranes to suppress hemodialysis induced oxidative stress. [J]. Journal of Membrane Science, 2014. 449 27-37.
[64] Hakim, R.M., J. Breillatt, J.M. Lazarus, et al. Complement activation and hypersensitivity reactions to dialysis membranes. [J]. New England Journal of Medicine, 1984. 311(14) 878-882.
[65] Muthusubramaniam, L., R. Lowe, W.H. Fissell, et al. Hemocompatibility of silicon-based substrates for biomedical implant applications. [J]. Ann Biomed Eng, 2011. 39(4) 1296-305.
[66] 徐又一和徐志康, 高分子膜材料[M].化学工业出版社:2005
[67] Abel, J.J., L.G. Rowntree and B. Turner. On the removal of diffusible substances from the circulating blood of living animals by dialysis. [J]. Journal of Pharmacology and Experimental Therapeutics, 1914. 5(3) 275-316.
[68] Haas, G. Dialysis of the flowing blood in the patient. [J]. Klin Wochenschr, 1923. 70(1) 888.
[69] Kolff, W., H. Berk, N.M. WELLE, et al. The artificial kidney: a dialyser with a great area. [J]. Acta Medica Scandinavica, 1944. 117(2) 121-134.
[70] Alwall, N. On the artificial kidney. I.Apparatus for dialysis of blood in vivo. [J]. Acta Medica Scandinavica, 1947. 128(4) 317-325.
[71] Alwall, N. On the Artificial Kidney XIII. Constructional details of the dialyzer-ultra?ltrator intended for homo. [J]. Acta Medica Scandinavica, 1949. 133(S229) 30-31.
[72] Alwall, N. Historical perspective on the development of the artificial kidney. [J]. Artificial organs, 1986. 10(2) 86-99.
[73] Skeggs, L.T. and J.R. Leonards. Studies on an artificial kidney: I. Preliminary results with a new type of continuous dialyzer. [J]. Science, 1948. 108(2800) 212-213.
[74] Twardowski, Z. On the advantages and possibility of constructing a “capillary” artificial kidney. [J]. Acta medica Polona, 1964. 5 303.
[75] Stewart, R.D., B.J. Lipps, E.D. Baretta, et al. Short-term hemodialysis with the capillary kidney. [J]. ASAIO Journal, 1968. 14(1) 121-125.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号