Study on the surface modification ofhydrophobic PVDF hollow fiber membrane forMBfR |
Authors: WEN Qi, WANG Xuan *, LU Xiaolong *, ZHANG Lijuan, WU Chunrui |
Units: State key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University,Institution of Biological and Chemical Engineering,Tianjin 300387,China) |
KeyWords: membrane biofilm reactor; hydrophobic membrane; interfacial polymerization; oxygen mass transfer performance |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2015,35(6):16-21 |
Abstract: |
In order to recoverovercome some disadvantages ofhydrophobic hollow fiber membrane used in the MBfR, such as insufficient oxygen supply capacity and poor antifouling properties,a interfacial polymerization was used to research the surface modification of self-madehydrophobic polyvinylidene fluoride (PVDF) hollow fiber membrane, chitosan(Cs) was selected as the aqueous phase monomer, together with trimesoyl chloride(TMC) as oil phase monomer. Orthogonal experimental method was chosen to study the effects of the monomer concentrations inthe water and oil phases, interfacial polymerization time and heat treatment time on the performance of composite membrane systematically, in which the oxygen mass transfer performance was used as evaluation index and the Bovine serum albumin (BSA), humic acid (HA) and sodium alginate (SA) were used as the typical organic pollutants to investigate the anti-pollution capacity of the membranes.The results show that the modified membrane had a similar mechanical strength compared with the original membrane, when the concentrations of TMC and CS is 0.35 wt% and 0.30 wt% respectively, interfacial polymerizationtime is 15 min and heat treatment temperature is 70℃, the oxygen transfer coefficient of the modified membrane was increased (oxygen transfer coefficient was 1.8 times than the original membrane), the surface hydrophilicity of the modified membrane was improved (contact angle decreased from 69.8° of the original membrane to 39.9°), the pollution resistantanti-foulingabilityof the modified membrane is superior to that of the original membrane. |
Funds: |
国家自然科学基金(51408415),国家自然科学基金项目(21176188 |
AuthorIntro: |
温琦(1988-),女,硕士研究生,疏水性PVDF膜表面改性及MBfR应用研究E-mail:wenqi428@163.com |
Reference: |
[1]Maitin K J, Nerenberg R. The membrane biofilm reactor (MBfR) for water and wastewater treatment: Principles, applications, and recent developments[J].BioresourceTechnology, 2012, 122(3):83-94. [2]张杨, 李庭刚, 强志民, 等. 膜曝气生物膜反应器研究进展[J]. 环境科学, 2011, 31(6): 1133-1143. [3]Casey E, Glennon B, Hamer G. Review of membrane aeratedbiofilm reactors[J]. Resources Conservation Recycling, 1999, 27(1-2): 203-215. [4]Yamagiwa K, Yoshida M. A new oxygen supply method for simultaneousorganic carbon removal and nitrification by a one-stage biofilm process[J].Water Scienceand Technology, 1998, 37(4-5): 117-124. [5]Pankhania M, Stephenson T, Semmen M J. Hollow fiber bioreactor forwastewater treatment using bubbleless membraneaeration[J]. Water Research, 1994, 28(10): 2233-2236. [6]Hou F F, Li B A, Xing B H, et al.Surface modification of PVDF hollow fiber membrane and its applicationin membrane aerated biofilm reactor (MABR)[J]. Bioresource Technology, 2013, 140:1-9. [7]Casey E, Glennon B, Hamer G. Biofilm development in a membrane-aerated biofilm reactor effect of intra-membrane oxygen pressure on performance[J]. Bioprocess Engineering, 2000, 23(10): 457-465. [8]SomnukB, AmpaiC, Ratana J. Modification of PVDF membrane by chitosan solution for reducingprotein fouling[J]. Journal of Membrane Science, 2009, 342(1-2):97-104. [9]Reij MW, Keurentjes JTF, Hartmans S. Membrane bioreactors for waste gas treatment[J]. Journal ofBiotechnology, 1998, 59(3):155–167. [10]Wilderer P A, Brautigam J, Sekoulov I.Application of gas permeablemembranes for auxiliary oxygenation of sequencing batch reactors[J].Conservation Recycling, 1985, 8(1-2): 181-192. [11]Voss MA, Ahmed T, Semmens MJ. Long-term performance of parallel-flow, bubbleless, hollow-fiber-membrane aerators[J]. Water EnvironmentResearch, 1999, 71(1): 23-30. [12]Hibiya K, Tsuneda S, Hirata A. Formation and characteristics ofnitrifying biofilm on a membrane modified with positively-chargedpolymer chains[J]. Colloid and Surfaces B: Biointerfaces, 2000, 18(2):105-112. [13]Terada A, Yamamoto T. Hibiya K, et al. Enhancement of biofilmformation ontosurface-modified hollow-fiber membranes and itsapplication to a membrane-aerated biofilmreactor[J]. BiofilmSystems, 2004, 49(11-12): 263-268. [14]邢明皓, 宋震宇, 李保安, 等. 界面聚合法制备MABR中空纤维膜[J]. 化学工业与工程, 2013, 30(1): 48-52. [15]Ahmad A L, B S Ooi.Properties–performance of thin film composites membrane:study on trimesoyl chloride content and polymerization time[J]. Journal of Membrane Science, 2005, 255(3): 67–77. [16]Yang J M, Su W Y, Leu T L, et al. Evaluation of chitosan/PVA blended hydrogel membranes [J]. Journal of Membrane Science, 2004, 236(1-2):39-51. [17]环国兰, 张宇峰, 杜启航, 等. 正交试验优化复合纳滤膜复合条件[J]. 膜科学与技术, 2004, 24(5): 77-79. [18]Ahmed T, Michael J. Use of sealed hollow fibers for bubble less membrane aeration: experimental studies[J].Journal of Membrane Science, 1992, 69(1-2):1-10. [19]吕晓龙. 中空纤维多孔膜性能评价方法探讨[J].膜科学与技术, 2011, 31(2): 1-6. [20]刘美, 王湛蓝. 胞外聚合物对膜污染的影响[J].水处理技术, 2007, 33(10): 7-13. [21]袁金华, 王有乐. 清水充氧实验中饱和溶解氧值确定方法的探讨[J].水资源保护, 2008, 24(2): 79-81. [22]CharacklisW G, WildererPA. Structure and Functions of Biofilms[M]. New York: Willey J, 1989, 1-387. [23]Lee S, Elimelech M. Relating organic fouling of reverse osmosis membranes tointermolecular adhesion forces[J]. Environmental Science and Technology, 2006, 40(3): 980-987. [24]王铎, 娄红瑞, 汪锰. 聚酯酰胺反渗透膜的耐污染性和耐氯性[J].膜科学与技术, 2009, 29(5): 58-61. [25]Lee S, Ang W S, Elimelech M. Fouling of reverse osmosis membranes byhydrophilic organic matter: implications for water reuse[J]. Desalination, 2006,187(1-3): 313-321. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号