Moving mesh-based dynamic numerical simulation for the process of retaining pollution on ultrafiltration membrane |
Authors: CUI Hai-hang,HU Xiao-jing,LIU Jun-fang. |
Units: School of Environment and Municipal Engineering,Xi’an University of Architecture and Technology,Xi’an 710055 |
KeyWords: ultrafiltration;membrane fouling;numerical simulation; moving mesh |
ClassificationCode:TQ028.8;X703 |
year,volume(issue):pagination: 2015,35(6):58-66 |
Abstract: |
Different from theexistinganalytical solutionsandthe static numericalsimulation,this paper aims atthe problem ofultrafiltration membranefouling. We establishedthe computational fluid dynamics(CFD)–based research means with moving mesh skill. The physical modelcoupled free flow, porousmedia flowanddiluted species transportprocess. Grid velocityat the pollutant interface was decided by the summing of normalaccumulationof pollutantsandthe tangentialshear elution. Then the matching parameters inthisexpressionwere determinedbya hollowfiber membrane moduleexperiments. Thedynamicsimulationprocess about retaining pollutantsonthe membrane surface was realized.On the basis ofthe established dynamicmodel,we studiedthe filtration performance with the differentmembrane surfacepattern (flat membraneandsinusoidal patterned membrane). The study showed thatthe distribution of shear stress onflatmembrane was more uniform and the fluxdecreased significantly. However, after a period of time, the specialshapesinusoidal patterned membrane generated an uneven distribution of shear stress on the peaks and valleys region, by which the betteranti-pollution performance was obtained and the membrane can maintain acertain degree offiltration fluxfor a long time. In summary, the establishedmodel provides an effectivemeans for thein-depth studyof pollutantsinterceptionprocessand optimizingdesignof the membrane module. |
Funds: |
西安建筑科技大学创新团队 |
AuthorIntro: |
崔海航(1975- ),男,陕西咸阳人,博士,副教授,主要研究膜科学方向,Tel:13319206754,E-mail:cuihaihang@xauat.edu.cn. |
Reference: |
[1]邵刚. 膜法水处理技术[M]. 冶金工业出版社, 1992. [2]薛勇刚, 官嵩, 戴晓虎, 等. 膜污染机制及其控制技术研究的新进展[J]. 环境污染与防治, 2014, 36(9): 74-78. [3]于媚清, 林英姿. 超滤膜污染的预防与控制现状[J]. 中国资源综合利用, 2014, 32(1): 25-27. [4]耿全月, 王捷, 罗南, 等. CFD 技术在膜过滤过程中的应用[J]. 工业水处理, 2012, 32(3): 1-5. [5]于艳, 樊耀波, 徐国良. 计算流体力学在膜技术及膜生物反应器研究中的应用[J]. 膜科学与技术,2010,31(1):105-112. [6]侯立安,尹洪波.计算流体力学在纳滤膜分离技术研究中应用[J].膜科学与技术,2011,31(3):5-10. [7]Rahimi M, Madaeni S S, Abbasi K. CFD modeling of permeate flux in cross-flow microfiltration membrane[J]. Journal of membrane science, 2005, 255(1): 23-31. [8]Shakaib M, Hasani S M F, Mahmood M. CFD modeling for flow and mass transfer in spacer-obstructed membrane feed channels[J]. Journal of Membrane Science, 2009, 326(2): 270-284. [9]韩杰, 朱彤, 黄永刚, 等. 浸没板式膜生物反应器中流体运动的数值模拟[J]. 化学与生物工程, 2008, 25(11): 44-47. [10]李金, 王泽. 浸没式超滤膜过滤器内流场的数值模拟[J]. 三峡大学学报: 自然科学版, 2010, 32(3): 14-17. [11]Marcos B, Moresoli C, Skorepova J, et al. CFD modeling of a transient hollow fiber ultrafiltration system for protein concentration[J]. Journal of Membrane Science, 2009, 337(1): 136-144. [12]Rajabzadeh A R, Moresoli C, Marcos B. Fouling behavior of electroacidified soy protein extracts during cross-flow ultrafiltration using dynamic reversible–irreversible fouling resistances and CFD modeling[J]. Journal of Membrane Science, 2010, 361(1): 191-205. [13]周光炯,严宗毅,许世雄,等.流体力学(上册)[M].高等教育出版社,2000. [14]王福军.计算流体动力学分析:CFD软件原理与应用[M].清华大学出版社,2004. [15]郝禾田, 王磊, 王旭东, 等. 内压式中空纤维超滤膜污染模型研究[J]. 环境科学与技术, 2009, 32(4): 166-169. [16]王补宣, 盛文彦, 彭晓峰, 等. 剪切力作用下颗粒的絮凝与破碎[J]. 热科学与技术, 2007, 6(3): 189-192. [17]Lee Y K, Won Y J, Yoo J H, et al. Flow analysis and fouling on the patterned membrane surface[J]. Journal of Membrane Science, 2013, 427: 320-325. [18]罗南, 樊耀波, 王捷, 等. 超滤过程中浸没式中空纤维膜组件的数学模拟优化研究[J]. 膜科学与技术, 2014, 34(2): 32-39. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号