Position:Home >> Abstract

Preparation and performance of copoly(phthalazinone biphenyl ether sulfone) composite forward osmosis membranes
Authors: LIU Peng, ZHANG Shou-hai, WANG Tao, DING Rong, WANG Zhen-lin, JIAN Xi-gao
Units: Department of Polymer Science and Materials, Dalian University of Technology, Liaoning High Performance Polymer Engineering Research Center, Liaoning Key Laboratory of Polymer Science and Engineering, Dalian116024, China
KeyWords: copoly(phthalazinone biphenyl ether sulfone); forward osmosis; hollow fiber; composite membrane; interfacial polymerization
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2016,36(4):7-13

Abstract:
 Copoly(phthalazinone biphenyl ether sulfone) (PPBES) polymer were used as the membrane materials for the fabrication of hollow fiber substrate membranes. Novel polyamide composite forward osmosis (FO) hollow fiber membranes were fabricated via interfacial polymerization method on the lumen side of the substrate membranes. Effect of casting solution compositions and interfacial polymerization preparation techniques on the morphologies and performance of composite FO membranes was investigated, respectively. The addition of glycol in the casting solution changed the structures and performance of PPBES hollow fiber substrate membranes. The structures and performance of PPBES substrate membranes affected the morphologies of polyamide active layer and the performance of composite FO membranes. The surface morphologies of the polyamide active layer were altered with the change of MPD concentrations, which could affect the performance of composite FO membranes. The water flux and Js/Jv ratio of composite membranes decreased significantly when MPD concentration varied from 0.5% to 2%, and then changed slightly when the MPD concentration exceeded 2%. The water flux of FO membranes improved significantly from 20.3 L/m2h to 34.0 L/m2h without significant changes of Js/Jv ratio when the feed solution temperature increased from 25 °C to 80 °C. The novel composite FO membrane exhibited good thermal stability.

Funds:
大连市科技计划项目(2014J11JH127)

AuthorIntro:
作者简介:刘鹏 (1987—),男,山东省日照市人,博士研究生,主要从事正渗透膜材料的研究. * 通讯联系人:张守海教授zhangshh@dlut.edu.cn;蹇锡高教授jian4616@dlut.edu.cn。

Reference:
[1] 胡群辉,邹昊,姜莹,等.正渗透膜分离关键技术及其应用进展[J].膜科学与技术,2014, 34(5):109-115.
[2] Ghaffour N, Missimer T M, Amy G L. Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability[J]. Desalination, 2013, 309: 197-207.
[3] Lutchmiah K, Verliefde A R D, Roest K, et al. Forward osmosis for application in wastewater treatment: A review[J]. Water Research, 2014, 58: 179-197.
[4] Zhao S, Zou L, Tang C Y, et al. Recent developments in forward osmosis: opportunities and challenges[J]. Journal of Membrane Science, 2012, 396: 1-21.
[5] Lee S, Boo C, Elimelech M, et al. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO)[J]. Journal of Membrane Science, 2010, 365(1): 34-39.
[6] Zhang X, Ning Z, Wang D K, et al. Processing municipal wastewaters by forward osmosis using CTA membrane[J]. Journal of Membrane Science, 2014, 468: 269-275.
[7] Cui Y, Ge Q, Liu X Y, et al. Novel forward osmosis process to effectively remove heavy metal ions[J]. Journal of Membrane Science, 2014, 467: 188-194.
[8] Mondal P, Tran A T K, Van der Bruggen B. Removal of As (V) from simulated groundwater using forward osmosis: Effect of competing and coexisting solutes[J]. Desalination, 2014, 348: 33-38.
[9] Cath T Y, Childress A E, Elimelech M. Forward osmosis: principles, applications, and recent developments[J]. Journal of Membrane Science, 2006, 281(1): 70-87.
[10] Wang K Y, Chung T S, Qin J J. Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process[J]. Journal of Membrane Science, 2007, 300(s 1–2):6-12.
[11] Li X, Wang K Y, Helmer B, et al. Thin-film composite membranes and formation mechanism of thin-film layers on hydrophilic cellulose acetate propionate substrates for forward osmosis processes[J]. Industrial & Engineering Chemistry Research, 2012, 51(30): 10039-10050.
[12] Shi L, Chou S R, Wang R, et al. Effect of substrate structure on the performance of thin-film composite forward osmosis hollow fiber membranes[J]. Journal of Membrane Science, 2011, 382(1): 116-123.
[13] Klaysom C, Hermans S, Gahlaut A, et al. Polyamide/Polyacrylonitrile (PA/PAN) thin film composite osmosis membranes: Film optimization, characterization and performance evaluation[J]. Journal of Membrane Science, 2013, 445: 25-33.
[14] 张守海,蹇锡高.杂萘联苯聚芳醚功能膜的研究进展[J].高分子通报,2011,9:1-12.
[15] Liu P, Zhang S, Wang Y, et al. Preparation and characterization of thermally stable copoly(phthalazinone biphenyl ether sulfone) hollow fiber ultrafiltration membranes[J]. Applied Surface Science, 2015, 335: 189-197.
[16] Han R, Zhang S, Hu L, et al. Preparation and characterization of thermally stable poly(piperazine amide)/PPBES composite nanofiltration membrane[J]. Journal of Membrane Science, 2011, 370:91-96. 
[17] Chou S, Shi L, Wang R, et al. Characteristics and potential applications of a novel forward osmosis hollow fiber membrane[J]. Desalination, 2010, 261(3): 365-372.
[18] Han R, Zhang S, Jian X. Effect of additives on the performance and morphology of copoly(phthalazinone ether sulfone) UF membrane[J]. Desalination, 2012, 290: 67-73.
[19] Tiraferri A, Yip N Y, Phillip W A, et al. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure[J]. Journal of Membrane Science, 2011, 367(1): 340-352.
[20] Song Y, Sun P, Henry L L, et al. Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process[J]. Journal of membrane science, 2005, 251(1): 67-79.
[21] Xie M, Price W E, Nghiem L D, et al. Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis[J]. Journal of Membrane Science, 2013, 438: 57–64.
[22] Phuntsho S, Vigneswaran S, Kandasamy J, et al. Influence of temperature and temperature difference in the performance of forward osmosis desalination process[J]. Journal of Membrane Science, 2012, 415–416: 734–744.
[23] You S J, Wang X H, Zhong M, et al. Temperature as a factor affecting transmembrane water flux in forward osmosis: Steady-state modeling and experimental validation[J]. Chemical Engineering Journal, 2012, 198–199: 52–60.
[24] Fang W, Wang R, Chou S, et al. Composite forward osmosis hollow fiber membranes: Integration of RO- and NF-like selective layers to enhance membrane properties of anti-scaling and anti-internal concentration polarization[J]. Journal of Membrane Science, 2012, 394-395:140–150.
[25] Rong W, Lei S, Tang C Y, et al. Characterization of novel forward osmosis hollow fiber membranes[J]. Journal of Membrane Science, 2010, 355(1–2):158–167.
[26] 李刚, 王周为, 李春霞,等. 界面聚合中空纤维正渗透膜的制备和表征[J]. 化工学报, 2014, 65(8):3082-3088.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号