Position:Home >> Abstract

Analysis of membrane parameters for forward osmosis membrane based on the nonequilibrium thermodynamics 
Authors: BIAN Li-xia, FANG Yan-yan, WANG Xiao-lin 
Units: Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
KeyWords: nonequilibrium thermodynamics; forward osmosis membrane; membrane parameter; transport phenomenon; osmotic pressure driven membrane process
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2016,36(4):75-83

Abstract:
 Transport phenomena of a forward osmosis membrane in both hydraulic and osmotic pressure driven membrane processes were analyzed by three independent membrane parameters based on nonequilibrium thermodynamics. To examine the uniformity of these parameters in membrane processes operated by different driving forces, we determined the membrane parameters of the same membrane active layer using independent methods. First, the membrane parameters were determined from rejection data of several neutral solutes in hydraulic pressure driven mode experiments. Second, the water volumetric flux and solute molar flux of the same neutral draw solutes were investigated in osmotic pressure driven mode experiments. The membrane parameters for these solutes were obtained based on the flux data and the nonequilibrium thermodynamic model. The results revealed good agreement between the two methods and contribute to further understanding the transport phenomenon in FO process and its difference from hydraulic pressure driven membrane processes.

Funds:
国家高技术研究发展计划(863)项目(批准号:2012AA03A604)

AuthorIntro:
第一作者简介:边丽霞(1986-),女,河北人,硕士研究生,主要研究方向为正渗透膜过程传质和动电现象,E-mail: blxlydia@126.com *通讯作者E-mail:xl-wang@tsinghua.edu.cn.

Reference:
 [1] Cath T Y, Childress A E, Elimelech M. Forward osmosis: Principles, applications, and recent developments[J]. J Membr Sci, 2006, 281: 70-87.
[2] Zhao S F, Zou L, Tang C Y Y, et al. Recent developments in forward osmosis: Opportunities and challenges[J]. J Membr Sci, 2012, 396: 1-21.
[3] McCutcheon J R, Elimelech M. Desalination by ammonia-carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance[J]. J Membr Sci, 2006, 278: 114-123.
[4] Holloway R W, Childress A E, Dennett K E, et al. Forward osmosis for concentration of anaerobic digester centrate[J]. Water Res, 2007, 41: 4005-4014.
[5] Xie M, Nghiem L D, Price W E, et al. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis[J]. Water Res, 2012, 46: 2683-2692.
[6] Petrotos K B, Quantick P, Petropakis H. A study of the direct osmotic concentration of tomato juice in tubular membrane-module configuration. ?. The effect of certain basic process parameters on the process performance[J]. J Membr Sci, 1998, 150: 99-110.
[7] Petrotos K B, Lazarides H N. Osmotic concentration of liquid foods[J]. J Food Eng, 2001, 49: 201-206
[8] Lee K L, Baker R W, Lonsdale H K. Membrane for power-generation by pressure-retarded osmosis[J]. J Membr Sci, 1981, 8: 141-171.
[9] Loeb S. Large-scale power production by pressure-retarded osmosis, using river water and sea water passing through spiral modules[J]. Desalination, 2002, 143: 115-122.
[10] McCutcheon J R, Elimelech M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes[J]. J Membr Sci, 2008, 318: 458-466.
[11] Gray G T, McCutcheon J R, Elimelech M. International concentration polarization in forward osmosis: role of membrane orientation[J]. Desalination, 2006, 197: 1-8.
[12] Babu B R, Rastogi N K, Raghavarao K S M S. Effect of process parameters on transmembrane flux during direct osmosis[J]. J Membr Sci, 2006, 280: 185-194.
[13] Bamaga O A, Yokochi A, Beaudry E G. Application of forward osmosis in pretreatment of seawater for small reverse osmosis desalination units[J]. Desalin Water Treat, 2009, 5: 183-191.
[14] Zhao S, Zou L. Relating solution physicochemical properties to internal concentration polarization in forward osmosis[J]. J Membr Sci, 2011, 379: 459-467.
[15] Achilli A, Cath T Y, Childress A E. Selection of inorganic-based draw solutions for forward osmosis applications[J]. J Membr Sci, 2010, 364: 233-241.
[16] McCutcheon J R, Elimelech M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis[J]. J Membr Sci, 2006, 284: 237-247.
[17] Zhao S, Zou L. Effects of working temperature on separation performance, membrane scaling and cleaning in forward osmosis desalination[J]. Desalination, 2011, 278: 157-164.
[18] Tang C Y Y, She Q H, Lay W C L, et al. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration[J]. J Membr Sci 2010, 354: 123-133.
[19] Hancock N T, Cath T Y. Solute coupled diffusion in osmotically driven membrane processes[J]. Environ Sci Technol, 2009, 43: 6769-6775.
[20] Phillip W A, Yong J S, Elimelech M. Reverse draw solute permeation in forward osmosis: modeling and experiments[J]. Environ Sci Technol, 2011, 44: 5170-5176.
[21] Hancock N T, Phillip W A, Elimelech M, et al. Bidirectional permeation of electrolytes in osmotically driven membrane processes[J]. Environ Sci Technol, 2011, 44: 10642-10651.
[22] Yong J S, Phillip W A, Elimelech M. Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes[J]. J Membr Sci, 2012, 392-393: 9-17.
[23] Sagiv A, Semiat R. Finite element analysis of forward osmosis process using NaCl solutions[J]. J Membr Sci, 2011, 379: 86-96.
[24] Li W, Gao Y, Tang C Y. Network modeling for studying the effect of support structure on internal concentration polarization during forward osmosis: Model development and theoretical analysis with FEM[J]. J Membr Sci, 2011, 379: 307-321.
[25] Gruber M F, Johnson C J, Tang C Y, et al. Computational fluid dynamics simulation of flow and concentration polarization in forward osmosis membrane systems[J]. J Membr Sci, 2011, 379: 488-495.
[26] Jung D H, Lee J, Kim D Y, et al. Simulation of forward osmosis membrane process: effect of membrane orientation and flow direction of feed and draw solution[J]. Desalination, 2011 277: 83-91.
[27] Spiegler K S, Kedem O. Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes[J]. Desalination, 1966, 1: 311-326.
[28] Perry M, Linder C. Intermediate reverse osmosis ultrafiltration (RO UF) membranes for concentration and desalting of low molecular weight organic solutes[J]. Desalination, 1989, 71: 233-245.
[29] Koyuncu I. Influence of dyes, salts and auxiliary chemicals on the nanofiltration of reactive dye baths: experimental observations and model verification[J]. Desalination, 2003, 154: 79-88.
[30] Vakili-Nezhaad G, Akbari Z. Modification of the extended Spiegler-Kedem model for simulation of multiple solute systems in nanofiltration process[J]. Desalin Water Treat, 2011, 27: 189-196.
[31] Kedem O, Freger V. Determination of concentration-dependent transport coefficients in nanofiltration: Defining an optimal set of coefficients[J]. J Membr Sci, 2008, 310: 586-593.
[32] Bason S, Kedem O, Freger V. Determination of concentration-dependent transport coefficients in nanofiltration: Experimental evaluation of coefficients[J]. J Membr Sci, 2009, 326: 197-204.
[33] Katchalsky A, Curran P F. Nonequilibrium thermodynamics in biophysics, Harvard University Press, 1965.
[34] Su J, Chung T S. Sublayer structure and reflection coefficient and their effects on concentration polarization and membrane performance in FO process[J]. J Membr Sci, 2011, 376: 214-224. 
[35] Porter M C. Concentration polarization with membrane ultrafiltration[J]. Ind Eng Chem Prod Res Develop, 1972, 11: 234-248.
[36] Mulder M. Basic principles of membrane technology[M]. 2nd edition, Kluwer Academic Publishers, Dordrecht, 1996.
[37] Maruo A. Some Properties of Ionic and Nonionic Semipermeable Membranes[J]. Circulation, 1960, 21: 845-854.
[38] Staverman A J. The theory of measurement of osmotic pressure[J]. Recueil des Travaux Chimiques des Pays-Bas, 1951, 70: 344-352.
[39] Anderson J, Malone D. Mechanism of osmotic flow in porous membranes[J]. Biophysical Journal, 1974, 14: 957-982.
[40] Robbins E, Mauro A. Experimental study of the independence of diffusion and hydrodynamic permeability coefficients in collodion membranes[J]. J Gen Physiol, 1960, 43: 523-532.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号