Position:Home >> Abstract

Dielectric monitoring of membrane fouling during simulated treatment for polluted water by ceramic membrane-powdered activated carbon suspension 
Authors: YANG Man1, HUANG Rongrong1, ZHAO Kongshuang1, *, SONG Jia2, ZHANG Xihui2
Units: 1 College of Chemistry, Beijing Normal University, Beijing 100875, China 2 Research Center for Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055
KeyWords: dielectric relaxation spectroscopy; ceramic membrane; activated carbon; membrane fouling; real-time monitoring
ClassificationCode:O63;TQ028
year,volume(issue):pagination: 2016,36(5):72-80

Abstract:
 The process of simulated treatment for polluted water by ceramic membrane-powdered activated carbon suspension was studied by dielectric relaxation spectroscopy (DRS). Dielectric parameters show that the interfacial polarization between membrane and polluted water is strongly influenced by the concentration of activated carbon: with the increase of activated carbon, the interfacial polarization between membrane and polluted water turns into the interfacial polarization between fouling layer and polluted water, suggesting the occurrence of membrane fouling; when the activated carbon concentration exceeds 0.3g/L, the fouling becomes significant. Besides, the relevance of membrane fouling and running time of the treatment process can be characterized by the electrical parameters of fouling layer, membrane and contaminating fluid. Thus we draw the conclusion that: the fouling process of ceramic membrane can be monitored in real time by the measured dielectric parameters and electrical parameters of fouling layer obtained by dielectric analysis; for the flat ceramic membrane-activated carbon (corrosive acid) suspension system in this work, the optimum operating time is about 1h. This study shows that the quantitative modeling dielectric analysis is feasible to monitor the fouling of ceramic membrane in combined process.

Funds:
国家自然科学基金(No.21173025, 21473012)

AuthorIntro:
第一作者简介:杨曼,女,博士研究生,北京师范大学化学学院,研究方向为高分子凝胶和高分子膜的介电研究,Email: yangman0914@163.com, * 通讯作者Email:zhaoks@bnu.edu.cn

Reference:
 [ ]Xing W,Fan Y,Jin W,Applicationofceramicmembranesinthetreatmentofwater,in:M.Duke,D.Zhao,R.Semiat(Eds.),FunctionalNanostructuredMaterialsandMembranesforWaterTreatment,Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim,Germany,2013.
[ ]Fan Y, Qi H, Xu N. Advances in preparation techniques of porous ceramic membranes[J]. CIESC. Journal, 2013: 107-115.
[ ]Chen X, Lin Y, Lu Y, et al. A facile nanoparticle doping sol–gel method for the fabrication ofdefect-free nanoporous ceramic membranes[J]. Colloids and Interface Science Communications 5 (2015) 12–15.
[ ]Yang Y, Chen R, Xing W. Integration of ceramic membrane microfiltration with powdered activated carbon for advanced treatment of oil-in-water emulsion[J]. Separation and Purification Technology, 2011, 76(3): 373-377.
[ ]郭建宁, 陈磊, 张锡辉, 等. 臭氧/陶瓷膜对生物活性炭工艺性能和微生物群落结构影响[J]. 中国环境科学, 2014 (3): 697-704.
[ ]Tomaszewska M, Mozia S. Removal of organic matter from water by PAC/UF system[J]. Water research, 2002, 36(16): 4137-4143.
[ ]Dong B, Cao D, Fan J, et al. The Characteristics of Resistance in Filtering Natural Raw Wate by UF Process[J]. Technology of Water Treatment, 2001, 27(2): 80-83.
[ ]Dong B, Cao D, Fan J, et al.Ultrafiltration of micropolluted water in combination with coagulation and PAC process[J].Environmental Science,2001,22(1):37-40.
[ ]Yin N, Zhong Z, Xing W. Ceramic membrane fouling and cleaning in ultrafiltration of desulfurization wastewater[J]. Desalination, 2013, 319: 92-98.
[ ]Li X, Li J, Wang J, et al. Experimental investigation of local flux distribution and fouling behavior in double-end and dead-end submerged hollow fiber membrane modules[J]. Journal of Membrane Science, 2014, 453: 18-26.
[ ]Li X, Li J, Wang J, et al. Direct monitoring of sub-critical flux fouling in a horizontal double-end submerged hollow fiber membrane module using ultrasonic time domain reflectometry[J]. Journal of Membrane Science, 2014, 451: 226-233.
[ ]Altmann J, Ripperger S. Particle deposition and layer formation at the crossflow microfiltration[J]. Journal of Membrane Science, 1997, 124(1): 119-128.
[ ]Hamachi M, Mietton-Peuchot M. Cake thickness measurement with an optical laser sensor[J]. Chemical Engineering Research and Design, 2001, 79(2): 151-155.
[ ]Asami K. Cell Electrofusion in Centrifuged Erythrocyte Pellets Assessed by Dielectric Spectroscopy[J]. The Journal of Membrane Biology, 2015: 1-9.
[ ]Salehli F, Bayrak I, Nigmatullin R, et al. Real time dielectric monitoring of glass transition in n-vinyl pyrrolidone polymerization[J]. Journal of Non-Crystalline Solids, 2007, 353(47): 4366-4370.
[ ]Hao W, Yang M, Zhao K, et al. Dielectric measurements of fouling of nanofiltration membranes by sparingly soluble salts[J]. Journal of Membrane Science, 2016, 497: 339-347.
[ ]Lu Q, Zhao K. Dielectric Spectroscopy of a Nanofiltration Membranes− Electrolyte Solution System: I. Low-Frequency Dielectric Relaxation from the Counterion Polarization in Pores and Model Development[J]. The Journal of Physical Chemistry B, 2010, 114(50): 16783-16791.
[ ]Zhao K, Jia J. Dielectric analysis of multi-layer structure of nanofiltration membrane in electrolyte solutions: Ion penetrability, selectivity, and influence of pH[J]. Journal of colloid and interface science, 2012, 386(1): 16-27.
[ ]Li Y, Gao W, Zhao K, et al. Real-Time Monitoring on the Adsorption Process of Salicylic Acid onto Chitosan Membrane Using Dielectric Spectroscopy: Macroscale Concentration Polarization and Dynamics[J]. The Journal of Physical Chemistry B, 2013, 117(12): 3337-3344.
[ ]Zhao K, Lu Q, Su W. Estimation of electrical parameters inside nanofiltration membranes in various electrolyte solutions by dielectric spectroscopy analysis[J]. RSC Advances, 2014, 4(108): 63085-63099.
[ ]Kiyohara K, Zhao K, Asaka K, et al. Determination of capacitances and conductances of the constituent phases from dielectric observations on terlamellar composite systems[J]. Japanese journal of applied physics, 1990, 29(9R): 1751.
[ ]Thurman E M. Organic geochemistry of natural waters[M]. Springer Science & Business Media, 2012.
[ ]倪贵智, 赵孔双, 李玉红, 等. 浓差极化介电模型对有机-无机杂化阴离子交换膜/电解质溶液体系的适用[J]. 膜科学与技术, 2014, 34(3): 8-14.
[ ] Shwann H P. Determination of biological impedance[M]//Physical Techniques In Biological Research. Academic Press New York, 1963, 6: 323-406.
[ ]Hanai, T.; Imakita, T.; Koizumi, N. Colloid Polym. Sci. 1982, 260, 1029.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号