Progress in aromatic polyamidebased membrane materials |
Authors: DU Shi-yuan, WANG Jun, LIN Chun-er, ZHANG Hong,ZHU Bao-ku*, ZHU Li-ping |
Units: Department of Polymer Science and Engineering,ERC Center of Membrane and Water Treatment Technology MOE, Key Laboratory of Novel Adsorption and Separation Materials and Application Technology ZJ, Zhejiang University, Hangzhou 310027, China |
KeyWords: aromatic polyamide; membrane; application; modification |
ClassificationCode:TQ342.1 |
year,volume(issue):pagination: 2016,36(5):124-131 |
Abstract: |
Aromatic polyamide is a heterocatenary polymer with repeat units containing amide groups (-CO-NH-) and benzene rings. It has been widely used to membrane research and industrial process due to its outstanding properties, such ashigh mechanical property, good chemical resistance, high thermal stability and good film-forming abilities. This articleprovides an overview of recent progress on the applications and modification of aromatic polyamide membranes.The applications include water treatment, gas separation, pervaporation and separator for battery, etc. Subsequently, the major problems of aromatic polyamide membranes in the applicationsprocess and the corresponding modification methods are comprehensively summarized. Finally, the development and applications of aromatic polyamide membranesin the future were discussed. |
Funds: |
国家高技术研究发展计划(863计划)资助项目(2012AA03A602);国家自然科学基金资助项目(20974094);国家自然科学基金资助项目(20974094,U1134002); |
AuthorIntro: |
作者简介:杜世媛(1990-),女,河南鹤壁人,在读硕士,师承朱宝库教授,从事分离膜材料研究,E-mail: dushiyuan1990@163.com。通讯作者:朱宝库,E-mail: zhubk@zju.edu.cn |
Reference: |
[1] Shintani T, Matsuyama H, Kurata N. Development of a chlorine-resistant polyamide reverse osmosis membrane[J]. Desalination, 2007, 207(1): 340-348. [2] La Y H, Sooriyakumaran R, Miller D C, et al. Novel thin film composite membrane containing ionizable hydrophobes: pH-dependent reverse osmosis behavior and improved chlorine resistance[J]. Journal of Materials Chemistry, 2010, 20(22): 4615-4620. [3] Wei X, Wang Z, Chen J, et al. A novel method of surface modification on thin-film-composite reverse osmosis membrane by grafting hydantoin derivative[J]. Journal of Membrane Science, 2010, 346(1): 152-162. [4] Rhim J W, Lee B, Park H H, et al. Preparation and characterization of chlorine resistant thin film composite polyamide membranes via the adsorption of various hydrophilic polymers onto membrane surfaces[J]. Macromolecular Research, 2014, 22(4): 361-369. [5] Zhang Z, Wang S, Chen H, et al. Preparation of polyamide membranes with improved chlorine resistance by bis-2, 6-N, N-(2-hydroxyethyl) diaminotoluene and trimesoyl chloride[J]. Desalination, 2013, 331: 16-25. [6] Hu D, Xu Z L, Wei Y M, et al. A Novel Composite Nanofiltration Membrane Prepared by Interfacial Polymerization of 2, 2’-Bis (1-Hydroxyl-1-trifluoromethyl-2, 2, 2-trifluoroethyl)-4, 4’-methylenedianiline and Trimesoyl Chloride[J]. Separation Science and Technology, 2013, 48(4): 554-563. [7] Gol R M, Bera A, Banjo S, et al. Effect of amine spacer of PEG on the properties, performance and antifouling behavior of poly (piperazineamide) thin film composite nanofiltration membranes prepared by in situ PEGylation approach[J]. Journal of Membrane Science, 2014, 472: 154-166. [8] Chu L Y, Wang S, Chen W M. Surface Modification of Ceramic‐Supported Polyethersulfone Membranes by Interfacial Polymerization for Reduced Membrane Fouling[J]. Macromolecular Chemistry and Physics, 2005, 206(19): 1934-1940. [9]An Q F, Sun W D, Zhao Q, et al. Study on a novel nanofiltration membrane prepared by interfacial polymerization with zwitterionic amine monomers[J]. Journal of Membrane Science, 2013, 431: 171-179. [10] Belfer S, Fainshtain R, Purinson Y, et al. Modification of NF membrane properties by in situ redox initiated graft polymerization with hydrophilic monomers[J]. Journal of membrane science, 2004, 239(1): 55-64. [11] Zhang Z, Wang Z, Wang J, et al. Enhancing chlorine resistances and anti-biofouling properties of commercial aromatic polyamide reverse osmosis membranes by grafting 3-allyl-5,5-dimethylhydantoin and N,N’-Methylenebis (acrylamide)[J]. Desalination, 2013, 309: 187-196. [12] Hachisuka H, Ikeda K. Composite reverse osmosis membrane having a separation layer with polyvinyl alcohol coating and method of reverse osmotic treatment of water using the same: U.S. Patent 6,177,011[P]. 2001-1-23. [13] Hachisuka H, Ikeda K. Reverse osmosis composite membrane and reverse osmosis treatment method for water using the same: U.S. Patent 6,413,425[P]. 2002-7-2. [14] Hatakeyama E S, Ju H, Gabriel C J, et al. New protein-resistant coatings for water filtration membranes based on quaternary ammonium and phosphonium polymers[J]. Journal of membrane science, 2009, 330(1): 104-116. [15] Yang R, Xu J, Ozaydin-Ince G, et al. Surface-tethered zwitterionic ultrathin antifouling coatings on reverse osmosis membranes by initiated chemical vapor deposition[J]. Chemistry of Materials, 2011, 23(5): 1263-1272. [16] Ni L, Meng J, Li X, et al. Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement[J]. Journal of Membrane Science, 2014, 451: 205-215. [17] Huang J, Zhang K. The high flux poly (m-phenylene isophthalamide) nanofiltration membrane for dye purification and desalination[J]. Desalination, 2011, 282: 19-26. [18] Ren X, Zhao C, Du S, et al. Fabrication of asymmetric poly (m-phenylene isophthalamide) nanofiltration membrane for chromium (VI) removal[J]. Journal of Environmental Sciences, 2010, 22(9): 1335-1341. [19] Ekiner O M, Vassilatos G. Polyaramide hollow fibers for hydrogen/methane separation-spinning and properties[J]. Journal of membrane science, 1990, 53(3): 259-273. [20]Ekiner O M, Vassilatos G. Polyaramide hollow fibers for H2/CH4 separation: II. Spinning and properties[J]. Journal of membrane science, 2001, 186(1): 71-84. [21] Sridhar S, Smitha B, Mayor S, et al. Gas permeation properties of polyamide membrane prepared by interfacial polymerization[J]. Journal of materials science, 2007, 42(22): 9392-9401. [22] Bandyopadhyay P, Bera D, Banerjee S. Synthesis, characterization and gas transport properties of semifluorinated new aromatic polyamides[J]. Separation and Purification Technology, 2013, 104: 138-149. [23] Singh A, Ghosal K, Freeman BD, et al. Gas separation properties of pendent phenyl substituted aromatic polyamides containing sulfone and hexafluoroisopropylidene groups[J]. Polymer, 1999, 40(20): 5715-5722. [24]Espeso J, Lozano A E, José G, et al. Effect of substituents on the permeation properties of polyamide membranes[J]. Journal of membrane science, 2006, 280(1): 659-665. [25] Albo J, Wang J, Tsuru T. Gas transport properties of interfacially polymerized polyamide composite membranes under different pre-treatments and temperatures[J]. Journal of Membrane Science, 2014, 449: 109-118. [26] Choi W, Ingole P G, Park J S, et al. H2/CO mixture gas separation using composite hollow fiber membranes prepared by interfacial polymerization method[J]. Chemical Engineering Research and Design, 2015, 102: 297-306. [27] Yuan F, Wang Z, Li S, et al. Formation–structure–performance correlation of thin film composite membranes prepared by interfacial polymerization for gas separation[J]. Journal of Membrane Science, 2012, 421: 327-341. [28] Liu Y, He B, Li J, et al. Formation and structural evolution of biphenyl polyamide thin film on hollow fiber membrane during interfacial polymerization[J]. Journal of Membrane Science, 2011, 373(1): 98-106. [29] Li S, Wang Z, Zhang C, et al. Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation[J]. Journal of Membrane Science, 2013, 436: 121-131. [30] Yu X, Wang Z, Wei Z, et al. Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture[J]. Journal of Membrane Science, 2010, 362(1): 265-278. [31] Li S, Wang Z, Yu X, et al. High-Performance Membranes with Multi-permselectivity for CO2 Separation[J]. Advanced Materials, 2012, 24(24): 3196-3200. [32] Lee K R, Liaw D J, Liaw B Y, et al. Selective separation of water from aqueous alcohol solution through fluorine-containing aromatic polyamide membranes by pervaporation[J]. Journal of membrane science, 1997, 131(1): 249-259. [33] Nagase Y, Ando T, Yun C M. Syntheses of siloxane-grafted aromatic polymers and the application to pervaporation membrane[J]. Reactive and Functional Polymers, 2007, 67(11): 1252-1263. [34] Lee K R, Wang Y H, Teng M Y, et al. Preparation of aromatic polyamide membrane for alcohol dehydration by pervaporation[J]. European polymer journal, 1999, 35(5): 861-866. [35]Huang S H, Hsu C J, Liaw D J, et al. Effect of chemical structures of amines on physicochemical properties of active layers and dehydration of isopropanol through interfacially polymerized thin-film composite membranes[J]. Journal of Membrane Science, 2008, 307(1): 73-81. [36] Zuo J, Wang Y, Sun S P, et al. Molecular design of thin film composite (TFC) hollow fiber membranes for isopropanol dehydration via pervaporation[J]. Journal of Membrane Science, 2012, 405: 123-133. [37]Xu J, Gao C, Feng X. Thin-film-composite membranes comprising of self-assembled polyelectrolytes for separation of water from ethylene glycol by pervaporation[J]. Journal of Membrane Science, 2010, 352(1): 197-204. [38] Wu D, Martin J, Du J, et al. Thin film composite membranes comprising of polyamide and polydopamine for dehydration of ethylene glycol by pervaporation[J]. Journal of Membrane Science, 2015, 493: 622-635. [39] Zuo J, Wang Y, Chung T S. Novel organic-inorganic thin film composite membranes with separation performance surpassing ceramic membranes for isopropanol dehydration[J]. Journal of Membrane Science, 2013, 433: 60-71. [40] 刘宜云, 衡沛之, 王丽萍. 基于芳纶纤维的电池隔膜[P], 中国专利, CN101867030A, 2010-06-21. [41] Sawamoto A, Nishibara K, Tsukuda A. Aromatic polyamide porous film, separator for battery, and battery: U.S. Patent Application 14/371,081[P]. 2012-9-4. [42] Jeon K S, Nirmala R, Navamathavan R, et al. The study of efficiency of Al2O3 drop coated electrospun meta-aramid nanofibers as separating membrane in lithium-ion secondary batteries[J]. Materials Letters, 2014, 132: 384-388. [43]Xiao K, Zhai Y, Yu J, et al. Nanonet-structured poly (m-phenylene isophthalamide)–polyurethane membranes with enhanced thermostability and wettability for high power lithium ion batteries[J]. RSC Advances, 2015, 5(68): 55478-55485. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号