Fabrication and ultrafiltration performance of SiO2/PAN hybrid membranes modified by APTES |
Authors: LIU Qiao,LI Lin*,WANG Chunlei,JIN Xin,XU Ruisong,WANG Tonghua* |
Units: (State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China) |
KeyWords: polyacrylonitrile; hybrid membranes; SiO2; APTES; in situ fabrication |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2017,37(2):1-5 |
Abstract: |
The SiO2/PAN hybrid membranes were fabricated in situ by the method of non-solvent induced phase separation (NIPS) with polyacrylonitrile (PAN) as the matrix, N,N-dimethylacetamide (DMAc) as the solvent, tetraethoxysilane (TEOS) as the inorganic precursor and 3-aminopropyltriethoxysilane (APTES) as the additive. The effects of APTES on the micromorphology, chemical structure, hydrophilic property and filtration performance of SiO2/PAN hybrid membranes were investigated by the SEM, FT-IR, contact angle measurement and ultrafiltration performance test. The results indicated that the –NH2 groups were grafted on the surface of SiO2 due to the modification of APTES, which promoted dispersion of SiO2 in the PAN matrix. Therefore, the hybrid membranes not only have a thinner surface layer and the vertical finger-like holes, but also improved the hydrophilic property and anti-fouling performance of the membranes. (T/A12)/PAN with APTES content of 12% exhibited the lowest contact angle and the pure water flux of 260.43 L/m2•h with the BSA rejection as high as 99%. |
Funds: |
国家自然科学基金资助项目(21276035,21376037,21436009,21576035,21506020,21676044);中央高校基本科研业务费资助项目(DUT16RC(4)05),中国博士后科学基金资助项目(2014M561232) |
AuthorIntro: |
作者简介:刘峤(1987-),男,安徽淮南,博士研究生,从事分离膜材料的研究及应用。E-mail:peakliu0525@163.com |
Reference: |
[1] 闫海红,张国俊,纪树兰. 聚丙烯腈超滤基膜的水解改性 [J]. 膜科学与技术,2007,27(5):56-61. [2] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades [J]. Nature,2008,452: 301-310. [3] D. Rana, T. Matsuura, Surface Modification for Antifouling Membranes [J]. Chem Rev,2010,110:2448-2471. [4] A. Asatekin, S. Kang, M. Elimelech, A.M. Mayes, Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives [J]. J Membr Sci,2007, 298: 136-146. [5] Meltem Yanilmaz, Yao Lu, Jiadeng Zhu, Xiangwu Zhang, Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries [J]. Journal of Power Sources,2016, 313: 205-212. [6] J.-S. Gu, H.-Y. Yu, L, Huang, Chain-length dependence of the antifouling characteristics of the glycopolymer-modified polypropylene membrane in an SMBR [J]. J Membr Sci,2009,326:145-152. [7] 隋燕,高从堦. 超滤膜材料抗污染改性方法研究进展 [J]. 膜科学与技术,2011,31(5):100-106. [8] Minoru Iwata, Takeharu Adachi, Miwa Tomidokoro, Michiyoshi Ohta, Takaomi Kobayashi, Hybrid Sol-Gel Membranes of Polyacrylonitrile-Tetaethoxysilane Composites for Gas Permselectivity [J]. Journal of Applied Polymer Science,2003,88: 1752-1759. [9] Y. Jafarzadeh, R. Yegani, Analysis of fouling mechanisms in TiO2 embedded high density polyethylene membranes for collagen separation [J]. Chemical Engineering Research and Design,2015,93:684-695. [10] W. Chen, Y. Su, L. Zhang, Q. Shi, J. Peng, Z. Jiang, In situ generated silica nanoparticles as pore-forming agent for enhanced permeability of cellulose acetate membranes [J]. J Membr Sci,2010,348:75-83. [11] Xin Li, Xiaofeng Fang, Ruizhi Pang, et al. Self-assembly of TiO2 nanoparticles around the pore of PES ultrafiltration membrane for mitigating organic fouling [J]. J Membr Sci,2014,467:226-235. [12] Feng Zhang, Wenbin Zhang, Yang Yu, et al. Sol-gel preparation of PAA-g-PVDF/TiO2 nanocomposite hollow fiber membranes with extremely high water flux and improved antifouling property [J]. J Membr Sci,2013,432:25-32. [13] Lishun Wu, Junfen Sun, Ziying Lv, Ying Chen. In-situ preparation of poly(ether imide)/amino functionalized silica mixed matrix membranes for application in enzyme separation [J]. Materials and Design,2016,92:610-620. [14] W. Chen, Y. Su, L. Zhang, Q. Shi, J. Peng, Z. Jiang, In situ generated silica nanoparticles as pore-forming agent for enhanced permeability of cellulose acetate membranes [J]. J. Membr. Sci,2010,348:75-83. [15] L. Wu, J. Sun, Z. Lv, Y. Chen, In-situ preparation of poly(ether imide)/amino functionalized silica mixed matrix membranes for application in enzyme separation [J]. Materials and Design,2016,92:610-620. [16] Liyun Yu, Zhenliang Xu, Hongmei Shen, Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method [J]. J. Membr. Sci,2009,337:257-265. [17] A. Sotto, A. Boromand, R. Zhang. Effect of nanoparticle aggregation at low concentrations of TiO2 on the hydrophilicity, morphology, and fouling resistance of PES-TiO2 membranes [J]. J. Colloid Interface Sci,2011,363:540-550. [18] X. Chen, S.S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications [J]. Chem Rev,2007,107:2891-2959. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号