Design and preparation of intermediate layer for ceramic nanofiltration membranes |
Authors: ZOU Dong, DA Xiaowei, QIU Minghui, FAN Yiqun* |
Units: (State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical engineering, Nanjing Tech University, Nanjing 210009, China ) |
KeyWords: ceramic nanofiltration membrane; intermediate layer ; alumina; dip coating |
ClassificationCode:TQ174 |
year,volume(issue):pagination: 2017,37(2):32-39 |
Abstract: |
The alumina with average particle size of 300 nm was used to prepare the stable dispersion after ultrasonic treatment, and then was dip-coated on the inner side of the substrate with pore size of 1 μm (based on the Hagen–Poiseuille and Darcy equation). After specific thermal treatment process, the defect free microfiltration membranes without obvious macropore were fabricated by one step. The results showed that the solid content of the dispersion, viscosity and the dipping time had great effect on the membrane thickness. When the time of ultrasonic treatment was over 20 min, the membrane thickness was over 40 μm and the sintering temperature was 1050 oC, the average pore size of microfiltration membranes was 100 nm and the maximum pore size was around 300 nm. The permeability was about 4000 Lm-2h-1MPa-1. Subsequently, the microfiltration membranes as sub-layers were applied to the fabrication of the ultrafiltration and nanofiltration membranes. The substrate with pore size of 1 μm greatly simplified the nanofiltration membrane preparation process, reduced the energy consumption, and improved practical application value of the ceramic nanofiltration membranes. This work provided an easy and cost-effective technique for the preparation and scaling-up of asymmetric tubular nanofiltration membranes. |
Funds: |
国家自然科学基金(91534108, 21506093); 江苏省自然科学基金(No.BK20150947) |
AuthorIntro: |
第一作者简介: 邹 栋(1991- ), 男, 江苏溧阳人, 硕士, 从事陶瓷膜分离材料的制备与应用. *通讯作者,E-mail: yiqunfan@njtech.edu.cn |
Reference: |
[1] Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356: 226-254. [2] Shahmansouri A, Bellona C. Nanofiltration technology in water treatment and reuse: applications and costs[J]. Water Sci Technol, 2015, 71 (3):309-319. [3] Weber R, Chmiel H, Mavrov V. Characteristics and application of new ceramic nanofiltration membranes[J]. Desalination, 2003, 157 (1-3): 113-125. [4] Cai Y Y, Wang Y, Chen X F, et al. Modified colloidal sol-gel process for fabrication of titania nanofiltration membranes with organic additives[J]. J Membr Sci, 2015, 476:432-441. [5] Cai Y Y, Chen X F, Wang Y, et al. Fabrication of palladium-titania nanofiltration membranes via a colloidal sol-gel process[J]. Micropor Mesopor Mat, 2015, 201:202-209. [6] 闻娟娟, 范益群, 无缺陷氧化铝微滤膜的制备研究[J]. 膜科学与技术, 2013, 33 (5):19-24. [7] Casado Coterillo C, Yokoo T, Yoshioka T, et al. Synthesis and Characterization of Microporous ZrO2 Membranes for Gas Permeation at 200 degrees C[J]. Sep Sci Technol, 2011, 46 (8):1224-1230. [8] Voigt I, Fischer G, Puhlfurss P, et.al. TiO2-NF-membranes on capillary supports[J]. Sep Purif Technol, 2003, 32 (1-3):87-91. [9] Qi H, Niu S, Jiang X, et al. Enhanced performance of a macroporous ceramic support for nanofiltration by using alpha-Al2O3 with narrow size distribution[J]. Ceram Int, 2013, 39 (3):2463-2471. [10] Zhu J, Fan Y Q, Xu N P. Modified dip-coating method for preparation of pinhole-free ceramic membranes[J]. J Membr Sci, 2011, 367 (1-2):14-20. [11] Da X W, Chen X F, Sun B H, et al. Preparation of zirconia nanofiltration membranes through an aqueous sol-gel process modified by glycerol for the treatment of wastewater with high salinity[J]. J Membr Sci, 2016, 504:29-39. [12] Chen X F, Zhang W, Lin Y Q, et al. Preparation of high-flux gamma-alumina nanofiltration membranes by using a modified sol-gel method[J]. Micropor Mesopor Mat, 2015, 214:195-203. [13] 徐南平, 邢卫红, 赵宜江. 无机膜分离技术与应用[M]. 北京: 化学工业出版社, 2003. [14] 笪晓薇. 水相溶胶路线制备ZrO2纳滤膜研究[D]南京:南京工业大学, 2015 [15] Leenaars A F M, Burggraaf A J. The preparation and characterization of alumina membranes with ultrafine pores .2. The formation of supported membranes[J]. J Colloid Interf Sci, 1985, 105 (1): 27-40. [16] Tiller F M, Tsai C D. Theory of filtration of ceramics .1.slip casting[J]. J Am Ceram Soc, 1986, 69 (12):882-887. [17] 丁晓斌, 范益群, 徐南平. 浸浆制备过程中载体微结构及涂膜工艺参数对膜厚度的影响[J]. 化工学报, 2006, 57 (11):2739-2744. [18] 丁晓斌, 范益群, 徐南平, 浸浆制备过程中陶瓷膜厚度控制及其模型化[J]. 化工学报, 2006, 57 (4): 1003-1008. [19] Dobrak A, Verrecht B, Van den Dungen H, et al. Solvent flux behavior and rejection characteristics of hydrophilic and hydrophobic mesoporous and microporous TiO2 and ZrO2 membranes[J]. J Membr Sci, 2010, 346 (2): 344-352. [20] Van Gestel T, Vandecasteele C, Buekenhoudt A, et al. Alumina and titania multilayer membranes for nanofiltration: preparation, characterization and chemical stability[J]. J Membr Sci, 2002, 207 (1):73-89. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号