Position:Home >> Abstract

Surface and Interface Engineering of Polymer Membranes 
Authors: YANG Jing, XU Zhikang
Units:
KeyWords: membrane, surface engineering, interfacial polymerization, microfiltration, ultrafiltration, nanofiltration, organic-inorganic composite, thin film composite
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2018,38(1):1-8

Abstract:
 We suggest that the main purposes of surface and interface engineering for polymer membranes include: 1) improving the service properties of typical membranes by surface modification and functionalization, 2)endowing the membrane surface with different structures to the membrane bulk, 3) developing novel strategies for the fabrication of selective skin layers, 4) evaluating the relationship between the surface structure and the separation property, and 5) finally realizing the advancement and multi-functionalization of the membranes. In this review, we summarize the progresses on the biomimetic modification and the biomineralization of polypropylene microfiltration membranes. We also discuss the perspectives of the “controlled” construction of selective skin layers for thin film composite nanofiltration membranes. The biomimetic modification and biomineralization strategies can be used for the surface modification and functionalization of other membranes including inorganic ones. The developed mussel-inspired chemistry, including polydopamine and those co-depositing systems, are useful for the fabrication of selective skin layers for thin film composite nanofiltration membranes. These coatings can also be applied as interlayers to modulate the interfacial polymerization for thin film composite nanofiltration membranes with high water permeatiom flux.

Funds:

AuthorIntro:

Reference:
 [1] Xu ZK, Huang XJ, Wan LS. Surface Engineering of Polymer Membranes [M]// Hangzhou: Springer and Zhejiang University, 2008. [2] Liu ZM, Xu ZK, Wan LS, et al. Surface modification of polypropylene microfiltration membranes by the immobilization of poly(n-vinyl-2-pyrrolidone): A facile plasma approach [J]. J MembrSci, 2005, 249(1-2): 21-31. [3] Ren PF, Fang Y, Xu ZK, et al. Surface modification of polypropylene microfiltration membrane grafted with poly(sulfobetaine methacrylate) and poly(ethylene glycol): Oxidative stability and antifouling capability [J]. J MembrSci, 2015, 492: 249-256. [4] Hu MX, Yang Q, Xu ZK. Enhancing the hydrophilicity of polypropylene microporous membranes by the grafting of 2-hydroxyethyl methacrylate via a synergistic effect of photoinitiators [J]. J MembrSci, 2006, 285(1-2): 196-205. [5] Yang Q, Xu ZK, Dai ZW, et al. Surface modification of polypropylene microporous membranes by glycopolymer: Aphotografting process[J]. Chem Mater, 2005, 17(11): 3050-3058. [6] Xu ZK, Dai QW, Wu J, et al. Covalent attachment of phospholipid analogous polymers to modify polymeric membrane surface: A novel approach [J] Langmuir, 2004, 20(4): 1481-1488. [7] Yang YF, Li Y, Xu ZK, et al. Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for antibiofouling [J]. J MembrSci, 2010, 362: 255-264. [8] Wang J,Wang Z, Liu YY, et al. Surface modification of NF membrane with zwitterionic polymer to improve anti-biofouling property [J]. J MembrSci, 2016, 514: 407-417. [9] Xu ZK, Wang JL, Shen L-Q, et al. Microporous polypropylene hollow fiber membrane: I. Surface modification by the graft polymerization of acrylic acid [J]. J MembrSci, 2002, 196(2): 221-229. [10] Yu HY, Xu ZK, Lei H, et al. Photoinduced graft polymerization of acrylamide on polypropylene microporous membranes for the improvement of antifouling characteristics in a submerged membrane-bioreactor [J]. Sep PurTechnol, 2007, 53: 119-125. [11] Yang YF, Hu HQ, Xu ZK, et al. Membrane surface with antibacterial property by grafting polycation [J]. J MembrSci, 2011, 376: 132-141. [12] Mondal S, Wickramasinghe S R.Photo-induced graft polymerization of N-isopropyl acrylamide on thin film composite membrane: Produced water treatment and antifouling properties [J]. SepPurTechnol, 2012, 90: 231-238. [13] Yang HC, Wu QY, Xu ZK, et al. Polydopamine gradients by oxygen diffusion controlled autoxidation [J]. ChemCommun, 2013, 49: 10522-10524. [14] Yang HC, Liao KJ, Xu ZK, et al. Mussel-inspired modification of polymer membrane for ultrahigh water permeability and oil-in-water emulsion separation [J]. J Mater Chem A, 2014, 2: 10225-10230. [15]Qiu WZ, Yang HC, Xu ZK, et al. Co-deposition of catechol/polyethyleneimine on porous membranes for efficient decolorization of dye water [J]. J Mater Chem A, 2015, 3: 14438-14444. [16] Yang HC, Pi JK, Xu ZK, et al. Silica-enveloped microfiltration membranes with a mussel-inspired intermediate layer for oil-in-water emulsion separation [J].ACS Appl Mater& Interfaces, 2014, 6(15): 12566-12572. [17] ZhangC, Yang HC, Xu ZK, et al. Polydopamine-coated porous substrates as a platform for mineralized β-feoohnanorods with photocatalysis under sunlight [J].ACS Appl Mater& Interfaces, 2015, 7 (21): 11567–11574. [18] Pi JK, Yang HC, Xu ZK, et al. Polypropylene microfiltration membranes decorated with tio2 nanoparticles for surface wettability and antifouling property [J].J MembrSci, 2016, 500: 8-15. [19]PengQ, Tseng YC, Darling SB, et al.Nanoscopic patterned materials with tunable dimensions via atomic layer deposition on block copolymers [J].Adv Mater, 2010, 22: 5129-5135. [20]Xu Q, YangJ, Wang Y, et al. Hydrophilization of porous polypropylene membranes by atomic layer deposition of TiO2 for simultaneously improved permeability and selectivity [J]. J MembrSci, 2013, 448: 215-220. [21] Wang C, Huang XJ, Xu ZK, et al. Glycosylation of polymer membrane surface by thiol?yne click chemistry for lectin affinity adsorption [J].ChemCommun, 2011, 47(13): 3930-3932. [22]Zhou R, Ren PF, Xu ZK, et al. Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition [J].J MembrSci, 2014, 466(1-2): 18-25. [23] Yang HC, LuoJQ, Xu ZK, et al. Surface Engineering of Polymer Membranes via Mussel-inspired Chemistry [J]. J MembrSci, 2015, 483: 42-59. [24]Zhang C, OuY, Xu ZK, et al. CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability [J].AngewChemInt Ed, 2016, 55: 3054-3057. [25] Yang HC, Wu MB, Xu ZK, et al. Dopamine: Just a right medicine for membranes [J]. AdvFunct Mater, 2017, in press. [26] He A, Zhang C, Xu ZK, et al. Mussel-inspired coatings directed and accelerated by an electric field [J].Macromol Rapid Commun, 2016, 37: 1460-1465. [27] Zhang C, Li HN, Xu ZK, et al. CuSO4/H2O2 triggered polydopamine/poly(sulfobetaine methacrylate) coatings for antifouling membrane surfaces [J]. Langmuir, 2017, 33 (5): 1210–1216. [28] QiuWZ, ZhongQZ, Xu ZK, et al. Enzyme-triggered green coatings of tea catechins/chitosanfor nanofiltration membranes with high performance [J]. Green Chem, 2016, 18: 6205-6208. [29] Zhang C, LvY, Xu ZK, et al. Polydopamine coatings with nanopores for versatile molecular separation [J]ACS Appl Mater& Interfaces, 2017, 9: 14437-14444. [30] LvY, Yang HC, Xu ZK, et al. Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking [J].J MembrSci, 2015, 476(1-2): 50-58. [31]Qiu WZ, Lv Y, Xu ZK, et al. Composite nanofiltration membranes via the co-deposition and cross-linking of catechol/polyethylenimine [J]. RSC Adv, 2016, 6: 34096 - 34102. [32] Du Y, Zhang C, Xu ZK, et al. Ultra-thin alginate coatings as selective layers for nanofiltration membranes with high performance [J]. ChemSusChem, 2017, 10(13): 2788-2795. [33] Du Y, Qiu WZ, Xu ZK, et al. Nanofiltration membranes with narrow pore size distribution via contra-diffusion induced mussel-inspired chemistry [J]. ACS Appl Mater& Interfaces, 2016, 8(43): 29696–29704. [34] LvY, Du Y, Xu ZK, et al. Nanocomposite membranes via the co-deposition of polydopamine/polyethyleneimine with silica nanoparticles for enhanced mechanical property and high water permeability [J].ACS Appl Mater& Interfaces, 2017, 9 (3): 2966–2972. [35] Lv Y, Du Y, Xu ZK, et al. Nanocomposite membranes of polydopamine/electropositive nanoparticles/polyethyleneimine for nanofiltration [J].J MembrSci, 2017, in press. [36] Lv Y, Yang HC, Xu ZK, et al. Novel nanofiltration membrane with ultrathin zirconia film as selective layer [J]. J MembrSci, 2016, 500: 265-271. [37] LvY, Zhang C, Xu ZK, et al.Photocatalytic nanofiltration membranes with self-cleaning property for wastewater treatment [J].AdvFunct Mater, 2017, 27(27): 1700251. [38] Zhang X, Lv Y, Xu ZK, et al. Polyphenol coating as an interlayer for thin-film composite membranes with enhanced nanofiltration performances [J]. ACS Appl Mater& Interfaces, 2016, 8(47): 32512–32519. [39] Yang X, Du Y, Xu ZK, et al. Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance [J]. Langmuir, 2017, 33(9): 2318–2324. [40] Wu MB, Yang HC, Xu ZK, et al. Nanofiltration membranes with a carbon nanotube intermediate layer and a microporous support for high permeation flux [J]. J MembrSci, 2016, 515: 238-244. [41]Zhu YZ, Xie W, Jin J, et al. Single-walled carbon nanotube film supported nanofiltration membrane with a nearly 10 nm thick polyamide selective layer for high-flux and high-rejection desalination [J]. Small, 2016, 12: 5034-5041. [42] Wang JJ, Yang HC, Xu ZK, et al. Nanofiltration membranes with cellulose naocrytals as an interlayer for unprecedented performance [J].J Mater Chem.A, 2017, 5: 16289 –16295.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号