Membrane fouling during the ultrafiltration process for pesticide wastewater treatment |
Authors: ZENG Kailiang 1, WANG Zhaohui 1,2, CUI Zhaoliang 1,2,*, WANG Xiaozu 1,LIU Fei 1, PENG Wenbo 2 |
Units: 1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering,Nanjing Tech University,Nanjing 210009,China; 2. JiangsuJiuwu Hi-Tech Co.,Ltd,Nanjing 211808,China; |
KeyWords: pesticide wastewater; ultrafiltration; critical flux; membrane fouling |
ClassificationCode:TQ028 |
year,volume(issue):pagination: 2018,38(2):98-105 |
Abstract: |
Nanofiltration is used in pesticide wastewater treatment to remove the low-molecule organic matters following advanced oxidation. It is necessary to pretreat the wastewater before nanofiltration by coagulation-ultrafiltration (UF) process to meet the feed requirement of nanofiltration membrane system. The effects of coagulant type and dosage were investigated, and the anti-fouling performance and the critical operation condition of the three kinds of ultrafiltration membranes under different pressures were studied. The optimized concentrations of polyaluminium chloride (PAC),ferric chloride (FeCl3·6H2O) and polyacrylamide (PAM)were800 mg/L, 500 mg/L, and 10 mg/L, respectively; under which conditions, the removal rates of CODCr, total phosphorus, turbidity, chromaticity by the hybrid process were 58.0-59.1%, 88.8%-89.7%, 99.8-99.9%, 84%, respectively. PVDF UF membrane with mean pore size of 20 nm exhibited higher critical flux and permeability compared with the membranes with pore size of 11 nm and 40 nm. Membrane fouling induced the reduction of membrane pore size, and a higher permeate flux can be obtained by optimizing the membrane pore size to reduce membrane fouling. |
Funds: |
AuthorIntro: |
第一作者简介:姓名(1992-),男,湖南株洲人,硕士,主要研究方向为高分子膜的制备和膜污染。 通讯作者,E-mail:zcui@njtech.edu.cn |
Reference: |
[1] Janssens I, Tanghe T, Verstraete W. Micropollutants: A bottleneck in sustainable wastewater treatment [J]. Water Sci Technol, 1997, 35(10): 13-26. [2] 李荣喜, 杨春平. 有机磷农药废水处理技术进展[J]. 环境科学与管理, 2008, 33(9): 84-87. [3] 方莎, 贾海涛, 吴念鹏. 超滤联合高级氧化工艺深度处理工业园区污水[J]. 膜科学与技术, 2016, 36(1): 99-103. [4] Zhang Y, Pagilla K. Treatment of malathion pesticide wastewater with nanofiltration and photo-Fenton oxidation [J]. Desalination, 2010, 263(1-3): 36-44. [5] 杨青, 张林生, 李月中. 纳滤膜在治理农药废水污染中的应用研究[J]. 工业水处理, 2009, 29(3): 29-32. [6] Field R W, Wu D, Howell J A, et al. Critical flux concept for microfiltration fouling [J]. J Membr Sci, 1995, 100(3): 259-272. [7] 姚金苗,王湛,梁艳莉等. 超、微滤过程中临界通量的研究进展[J]. 膜科学与技术, 2008, 28(2): 69-72. [8] 张凯歌, 李翠梅, 查巧珍. 太湖原水采用PVDF中空纤维超滤过程中临界通量与可持续通量的试验研究[J]. 膜科学与技术, 2016, 36(3): 109-114. [9] Neal P R, Li H, Fane A G, et al. The effect of filament orientation on critical flux and particle deposition in spacer-filled channels [J]. J Membr Sci, 2003, 214(2): 165-178. [10] 刘冲, 吕晓龙, 武春瑞等.关于超滤膜临界运行通量的探讨[J]. 膜科学与技术, 2017, 37(1): 23-26. [11] Qu F, Liang H, Zhou J, et al. Ultrafiltration membrane fouling caused by extracellular organic matter(EOM) from Microcystisaeruginosa: Effects of membrane pore size and surface hydrophobicity [J]. J Membr Sci, 2014, 449: 58-66. [12] 刘忠洲,张国俊,纪树兰. 研究浓差极化和膜污染过程的方法与策略[J]. 膜科学与技术, 2006, 26(5): 1-15. [13] Takaara T, Sano D, Konno H, et al. Cellular proteins of Microcystisaeruginosa inhibiting coagulation with polyaluminum chloride [J]. Water Res, 2007, 41(8): 1653-1658. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号