Position:Home >> Abstract

Research progress of the rotary energy recovery device
Authors: XU Enle1, 3, WANG Guanming2, FAN Meidan2, XIE Lefu3
Units: 1.College of Electro-mechanic Engineering, Qingdao University of Science and Technology, Qingdao 266000, China; 2. Xin Neng Feng Huang (Tengzhou) Energy Co. Ltd, Tengzhou 277500, China; 3. Weihai New Era Chemical Co. Ltd, Weihai 264200, China
KeyWords: rotary energy recovery device; seawater reverse osmosis system; mixing; rotor speed; energy recovery efficiency; flow fluctuation
ClassificationCode:TQ05
year,volume(issue):pagination: 2018,38(3):144-151

Abstract:
?The rotary energy recovery device (RERD) which is the typical example on the principle of positive displacement is one of the key facilities in the reduction of the operational cost in a seawater reverse osmosis system. This paper clarified the working principle of the RERD in detail. Four technical difficulties of RERD were concluded based on the working principle of the RERD which are the mixing, the rotor speed, the energy recovery efficiency and the service life, the flow fluctuation and the noise. The creative reason and the research solution about the four technical difficulties were discussed. The research status and development tendency to the enlargement and integration was illustrated. The research progress gives the direction for the fundamental research for the RERD and is the basis of RERD localization.

Funds:
山东省自然科学基金资助项目(ZR2017BEE043);山东省高等学校科技计划项目(J17KA181);青岛科技大学引进人才科研启动基金(010022769)

AuthorIntro:
许恩乐(1989-),男,山东济宁,博士,讲师,主要从事海水淡化能量回收装置的研发,*通讯作者,Email: xel360@126.com

Reference:
[1] 郑智颖, 李凤臣, 李倩, 等. 海水淡化技术应用研究及发展现状[J]. 科学通报, 2016, 61(21): 2344.
[2] 李科静. 浅谈海水淡化技术的分类与应用[J]. 科技资讯, 2016, 14(35):130.
[3] “十三五”我国将实现海水利用规模化应用推进核心装备国产化[J]. 中国战略新兴产业, 2017, 3:13.
[4] Song D, Wang Y, Xu S, et al. Control logic and strategy for emergency condition of piston type energy recovery device[J]. Desalination, 2014, 348:1-7.
[5] Drak A, Adato M. Energy recovery consideration in brackish water desalination[J]. Desalination, 2014, 339:34-39.
[6] 张建中, 杜鹏飞, 张希建, 等. 反渗透海水淡化能量回收装置的研制[J]. 水处理技术, 2010, 36(006):42-46.
[7] 高从堦, 周勇, 刘立芬. 反渗透海水淡化技术现状和展望[J]. 海洋技术学报, 2016, 35(1):1-14.
[8] Farooque A, Jamaluddin A, Al-Reweli A, et al. Parametric analyses of energy consumption and losses in SWCC SWRO plants utilizing energy recovery devices[J]. Desalination, 2008, 219(1-3):137-159.
[9] Song D, Wang Y, Lu N, et al. Development and stand tests of reciprocating-switcher energy recovery device for SWRO desalination system[J]. Desalin Water Treat, 2015, 54(6):1519-1525.
[10] Qi B, Wang Y, Wang Z, et al. Theoretical investigation on internal leakage and its effect on the efficiency of fluid switcher-energy recovery device for reverse osmosis desalting plant[J]. Chin J Chem Eng, 2013, 21(11):1216-1223.
[11] Song D, Wang Y, Xu S, et al. Analysis, experiment and application of a power-saving actuator applied in the piston type energy recovery device[J]. Desalination, 2015, 361:65-71.
[12] Al-Hawaj O. The design aspects of rotary work exchanger for SWRO[J]. Desalin Water Treat, 2009, 8(1-3): 131-138.
[13] Sallangos O. Operating experience of the Dhekelia seawater desalination plant using an innovative energy recovery system[J]. Desalination, 2005, 173(1): 91-102.
[14] Oklejas E, Hunt J. Integrated pressure and flow control in SWRO with a HEMI turbo booster[J]. Desalin Water Treat, 2011, 31(1-3): 88-94.
[15] Peñate B, García-Rodríguez L. Energy optimisation of existing SWRO (seawater reverse osmosis) plants with ERT (energy recovery turbines): Technical and thermoeconomic assessment[J]. Energy, 2011, 36(1): 613-626.
[16] Oklejas E, Pergande W F. Integration of advanced high-pressure pumps and energy recovery equipment yields reduced capital and operating costs of seawater RO systems[J]. Desalination, 2000, 127(2): 181-188.
[17] Gude V G. Energy consumption and recovery in reverse osmosis[J]. Desalin Water Treat, 2011, 36(1-3): 239-260.
[18] 刘静. 反渗透海水淡化现状分析及展望[J]. 科技信息, 2009, 20:242.
[19] Stover R L. Seawater reverse osmosis with isobaric energy recovery devices[J]. Desalination, 2007, 203(1-3): 168-175.
[20] Cameron I, Clemente R. SWRO with ERI’s PX pressure exchanger device -- A global survey[J]. Desalination, 2008, 221(1-3): 136-142.
[21] Mambretti S., Orsi E., Gagliardi S., et al. Behaviour of energy recovery devices in unsteady flow conditions and application in the modelling of the Hamma desalination plant[J]. Desalination, 2009, 238:233–245.
[22] Stover R. SWRO process simulator[J]. Desalination, 2008, 221(1-3): 126-135.
[23] Stover R, Ameglio A, Khan P. The Ghalilah SWRO plant: An overview of the solutions adopted to minimize energy consumption[J]. Desalination, 2005, 184(1-3): 217-221.
[24] 全国海洋标准化技术委员会, HYT108-2008, 反渗透用能量回收装置[S]. 北京: 中国标准出版社, 2008,
[25] Stover R. Development of a fourth generation energy recovery device A 'CTO's Notebook'[J]. Desalination, 2004, 165(313-321.
[26] 杨勇君,王越,张金鑫,韩松,徐世昌,王世昌. 旋转式能量回收装置混合过程优化研究[J]. 化学工业与工程, 2012, 29(6): 42-49.
[27] Xu E, Wang Y, Wu L, et al. Computational fluid dynamics simulation of brine–Seawater mixing in a rotary energy recovery device[J]. Ind Eng Chem Res, 2014, 53(47): 18304-18310.
[28] Liu Y, Zhou Y, Bi M. 3D numerical simulation on mixing process in ducts of rotary pressure exchanger[J]. Desalin Water Treat, 2012, 42(1-3): 269-273.
[29] Zhou Y, Ding X, Ju M, et al. Numerical simulation on a dynamic mixing process in ducts of a rotary pressure exchanger for SWRO[J]. Desalin Water Treat, 2009, 1(1-3): 107-113.
[30] 姜海峰, 周一卉, 张立冬. 反渗透海水淡化旋转式压力能回收装置中液柱活塞的数值模拟研究[J]. 能源工程, 2007, 6:4-8.
[31] Cao Z, Deng J, Yuan W, et al. Integration of CFD and RTD analysis in flow pattern and mixing behavior of rotary pressure exchanger with extended angle[J]. Desalin Water Treat, 2015, 55(33): 1-11.
[32] Wang Y, Wu L, Li B, et al. Numerical simulation and analysis of the mixing process of rotary pressure exchangers with different sizes and structures[J]. J Chem Eng Jpn, 2016, 49(7): 573-578.
[33] Mei C, Liu Y, Law A. Theory of isobaric pressure exchanger for desalination[J]. Desalin Water Treat, 2012, 39(1-3): 112-122.
[34] Pique G, Stover R, Martin J, et al. Rotary pressure transfer device with improved flow[P], US, 0196152 A1. 2010.
[35] Hauge L. Pressure exchanger[P], US, 7306437B2. 2007-.
[36] 赵飞, 冯忠明, 焦磊, 等. 压力交换器压力脉动频域与转子转速特征分析[J]. 工程热物理学报, 2014, 1: 74-77.
[37] Xu E, Wang Y, Zhou J, et al. Theoretical investigations on rotor speed of the self-driven rotary energy recovery device through CFD simulation[J]. Desalination, 2016, 398:189-197.
[38] 韩松, 王越, 许恩乐, 等. 水力驱动转子式能量回收装置启动特性研究[J]. 化学工业与工程, 2014, 31(2):23-30.
[39] 孙扬平, 王越, 许恩乐, 等. 水力自驱旋转式能量回收装置的转速推导[J]. 化学工业与工程, 2016, 33(4):67-73.
[40] Wu L, Wang Y, Xu E, et al. Employing groove-textured surface to improve operational performance of rotary energy recovery device in membrane desalination system[J]. Desalination, 2015, 369:91-96.
[41] Xu E, Wang Y, Wu J, et al. Investigations on the applicability of hydrostatic bearing technology in a rotary energy recovery device through CFD simulation and validating experiment[J]. Desalination, 2016, 383:60-67.
[42] 赵飞, 杨帅, 吴俊, 等. 基于Fluent的压力能交换器端面液膜支撑机理分析[J]. 浙江大学学报(工学版), 2014, 8:1528-1533.
[43] 周一卉,丁信伟. 旋转式压力能交换器密封端面液膜压力和泄漏量的数值模拟[J]. 润滑与密封, 2009, 34(6):81-84.
[44] 林静,孙明智. 轴向柱塞泵配流盘结构对流量脉动的影响[J]. 流体传动与控制, 2007, 3: 32-35.
[45] 方孝荣, 杜巧连, 陈海荣. 轴向柱塞泵流体噪声的机理分析[J]. 科技通报, 2002, 18(5): 424-427.
[46] Wang Y, Duan Y, Zhou J, et al. Introducing pre-pressurization/depressurization grooves to diminish flow fluctuations of a rotary energy recovery device: Numerical simulation and validating experiment[J]. Desalination, 2017, 413:1-9.
[47] Hauge L. Pressure exchanger for liquids[P], US, 4887942. 1989.
[48] Hauge L. Pressure exchanger having a rotor with automatic axial alignment[P], US, 5988993. 1999.
[49] Hauge L. Pressure exchanger[P], US, 6659731B1. 2003.
[50] Stover R. Rotory pressure exchanger[P], US, 0245909A1. 2006.
[51] Langmaack L, Wesson W. iSave,the easiest and most compact way to save energy on SWRO plants[J]. 2010 Asia—Pacific Conference on Desalination and water reclamation, 2010, 383-387.
[52] 张金鑫,王越,杨勇君,等. 反渗透海水淡化转子式压力交换器运行特性研究[J]. 化学工业与工程, 2012, 29(5):48-52.
[53] 程百花,王越,许恩乐,等. 旋转式能量回收装置的启动与运行特性[J]. 化工进展, 2013, 32(9):2030-2034.
[54] 周一卉, 丁信伟, 姜海峰, 等. 旋转式压力交换器中液柱活塞的形成与运动规律的理论研究[J]. 能源工程, 2008, 5: 1-4.
[55] 周一卉, 丁信伟, 姜海峰, 等. 旋转式压力能交换器孔道内液柱活塞数值模拟研究[J]. 大连理工大学学报, 2010, 50(6):883-887.
[56] 蒋亚荣. 一种液体余压能量回收[P]. CN, 101865191. 2013.
[57] Stover R, Martin J. Titan PX-1200 energy recovery device--test results from the Inima Los Cabos, Mexico, seawater RO facility[J]. Desalin Water Treat, 2009, 3(1-3): 179-182.
[58] Shumway S. Pressure exchange apparatus with integral pump[P], US, 7214315. 2007.
[59] Macharg J. Combined axial piston liquid pump and energy recovery pressure exchanger[P], US, 8419940B2. 2013.
[60] Macharg J. Axial piston machine[P], US, 7988428. 2011.
[61] 王越, 高建朋, 任亚斐, 等. 自增压式能量回收装置的开发与效能分析[J]. 天津大学学报(自然科学与工程技术版), 2016, 49(8):797-801.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号