Position:Home >> Abstract

Study on the fluid distribution and resistance of the hollow fiber membrane module housing
Authors: Zhuang Liwei1,2,XU Zhenliang1,*,Wei Yongming1,Yang Hu1,Ma Xiaohua1,Tang Chuyang1,Li Jinrong1,Song Zhen1,Li Zhanjiang1,Zheng Anli1,Zheng Heli1
Units: 1.Xilong Scientific Co., Ltd., Guangdong, Shantou 515000; 2.State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, East China University of Science and Technology, Shanghai 200237
KeyWords: Hollow fiber membrane module; CFD; fluid distribution; resistance
ClassificationCode:TQO51.8;TQO21.1
year,volume(issue):pagination: 2018,38(3):25-33

Abstract:
 Computational fluid dynamics (CFD) simulation and supplementary experiment have been conducted to investigate the fluid distribution inside the hollow fiber membrane module housing and the fluid resistance caused by individual part of the housing within the operating volumetric flow rate range (4.62~20 m3·h-1). The results showed that the fluid resistance caused by every individual part of the housing increased as the volumetric flow rate increased with an accelerated increase rate. As for the fluid resistance caused by the upper resin, it increased almost linearly with the volumetric flow rate. As the volumetric flow rate increased, the proportion of the energy consumption of upper resin decreased whereas the ones of the other parts of housing increased. The ratio of the inertial resistance to the overall resistance is high for the housing. Therefore, the effective energy consumption as the driving force of the filtration will be low if the hollow fiber membrane module is operated with a high volumetric flow rate. The lower manifold caused non-uniform initial fluid distribution, which will get increasingly more uniform as the fluid flowed upward. In normal operating volumetric flow rate range, the fluid distribution within the housing depends on the structure of the housing and is independent of the volumetric flow rate. 

Funds:
广东省“扬帆计划”引进创新创业团队项目资助(2016YT03C010),汕头市引进科技创新创业团队计划资助,国家自然科学基金(21706066)

AuthorIntro:
庄黎伟(1988-),男,江苏丹阳市人,博士,主要从事膜设备设计与膜过程强化的CFD研究。E-mail: zlwdml3344@hotmail.com *通讯作者,E-mail: chemxuzl@ecust.edu.cn

Reference:
 [1] Hennessy J, Livingston A, Baker R. Membranes from academia to industry[J]. Nat Mater. 2017, 16(3): 280-282.
[2] Yang X, Wang R, Fane A G, et al. Membrane module design and dynamic shear-induced techniques to enhance liquid separation by hollow fiber modules: a review[J]. Desal Water Treat. 2013, 51(16-18): 3604-3627.
[3] Mahon H I. Permeability separatory apparatus, permeability separatory membrane element, method of making the same and process utilizing the same[P]. US Patents 3,228,876, 1966.
[4] Mahon H I. Permeability separatory apparatus and process utilizing hollow fibers[P]. US Patents 3,228,877, 1966.
[5] Günther J, Hobbs D, Albasi C, et al. Modeling the effect of packing density on filtration performances in hollow fiber microfiltration module: A spatial study of cake growth[J]. J Membr Sci. 2012, 389: 126-136.
[6] Günther J, Schmitz P, Albasi C, et al. A numerical approach to study the impact of packing density on fluid flow distribution in hollow fiber module[J]. J Membr Sci. 2010, 348(1): 277-286.
[7] Bessiere Y, Fletcher D F, Bacchin P. Numerical simulation of colloid dead-end filtration: Effect of membrane characteristics and operating conditions on matter accumulation[J]. J Membr Sci. 2008, 313(1): 52-59.
[8] Kim J, Digiano F A. Defining critical flux in submerged membranes: influence of length-distributed flux[J]. J Membr Sci. 2006, 280(1): 752-761.
[9] Chang S, Fane A G, Vigneswaran S. Modeling and optimizing submerged hollow fiber membrane modules[J]. AIChE J. 2002, 48(10): 2203-2212.
[10] Kaya R, Deveci G, Turken T, et al. Analysis of wall shear stress on the outside-in type hollow fiber membrane modules by CFD simulation[J]. Desalination. 2014, 351: 109-119.
[11] Zhuang L, Guo H, Dai G, et al. Effect of the inlet manifold on the performance of a hollow fiber membrane module-A CFD study[J]. J Membr Sci. 2017, 526: 73-93.
[12] Buetehorn S, Volmering D, Vossenkaul K, et al. CFD simulation of single-and multi-phase flows through submerged membrane units with irregular fiber arrangement[J]. J Membr Sci. 2011, 384(1): 184-197.
[13] Amini E, Mehrnia M R, Mousavi S M, et al. Experimental Study and Computational Fluid Dynamics Simulation of a Full-Scale Membrane Bioreactor for Municipal Wastewater Treatment Application[J]. Ind Eng Chem Res. 2013, 52: 9930-9939.
[14] Rahimi M, Madaeni S S, Abbasi K. CFD modeling of permeate flux in cross-flow microfiltration membrane[J]. J Membr Sci. 2005, 255(1-2): 23-31.
[15] Fluent I. Fluent User’s Guide [Z]. Fluent Inc. 2006.
[16] 庄黎伟,戴干策. 中空纤维超滤膜组件通量分布的数值模拟[J]. 膜科学与技术. 2016, 36(2): 86-95.
[17] Zhuang L, Dai G, Xu Z. Three-dimensional simulation of the time-dependent fluid flow and fouling behavior in an industrial hollow fiber membrane module[J]. AIChE J. 2018, DOI: 10.1002/aic.16090.
[18] Idelchik I E. Fluid dynamics of industrial equipment-flow distribution design methods[M]. Washington: Taylor & Francis Inc, 1992: 1-403.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号