Improving the start-up performance of Microbial Fuel Cell with electroconductivity aerated membrane as biocathode |
Authors: WU Yun1,2, LIANG Jingjing1,2, WANG Zhenqiong1,2, HAN Lujie1, ZHANG Hongwei1,2, SUN Zhongfang |
Units: 1State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387,China; 2School of environmental and chemical engineering, Tianjin Polytechnic University, Tianjin 300387, China |
KeyWords: Microbial Fuel Cell; conductive-aeration cathode; denitrification; rapid start-up; FISH |
ClassificationCode:X52 |
year,volume(issue):pagination: 2018,38(6):76-83 |
Abstract: |
Microbial fuel cell (MFC) generally has a slow start-up, and the starting mode has great influence on the performance of anode and cathode. In this paper, the effect of constant potential on the starting process of the system and the performance of the biological cathode was analyzed by applying constant potential to the anode. The results showed that the application of constant potentials accelerated the startup process of the system and improved the bio-cathode performance of EAM-MFC. Cathode potential and EAM-MFC output voltage increased by 84 ± 1.51 mV and 127 ± 2.09 mV respectively; the cathode COD, ammonia nitrogen and total nitrogen removal efficiency were increased by 32.77 %, 10.09 % and 21.42 % respectively; and it can stimulate the growth of denitrifying microorganism on the cathode membrane module. |
Funds: |
国家自然基金面上项目(51678410);中国博士后科学基金(2015M571267);天津市科技计划项目(16PTGCCX00070) |
AuthorIntro: |
第一作者简介:梁晶晶(1992-),女,河北省大名县人,硕士研究生,废水脱氮和微生物燃料电池, E-mail:619202660@qq.com |
Reference: |
[1] Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation.[J]. Trends Biotechol, 2005, 23(6):291. [2] Lovley D R. Microbial fuel cells: novel microbial physiologies and engineering approaches[J]. Curr Opin Biotech, 2006, 17(3):327. [3] He Z, Largus&#x, T Angenent. Application of Bacterial Biocathodes in Microbial Fuel Cells[J]. Electroanal, 2006, 18(19-20):2009-2015. [4] Liu G, Yates M D, Cheng S, et al. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments.[J]. Bioresource Technol, 2011, 102(15):7301-7306. [5] Aelterman P, Rabaey K, Hai T P, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells.[J]. Environ Sci Technol 2006, 40(10):3388-3394. [6] Wagner R C, Call D F, Logan B E. Optimal Set Anode Potentials Vary in Bioelectrochemical Systems[J]. Environ Sci & Technol, 2010, 44(16):6036-6041. [7] Wang X, Feng Y, Ren N, et al. Accelerated start-up of two-chambered microbial fuel cells: Effect of anodic positive poised potential[J]. Electrochim Acta, 2009, 54(3):1109-1114. [8] Aelterman P, Freguia S, Keller J, et al. The anode potential regulates bacterial activity in microbial fuel cells[J]. Appl Microbiol & Biot, 2008, 78(3):409-418. [9]李金洋, 陈涛, 胡艳清,等. 外加直流电场对微生物燃料电池阳极微生物的影响研究[J]. 可再生能源, 2012,30(4):93-96. [10]丁为俊, 刘鹏, 刘伟凤,等. 循环伏安扫描对微生物燃料电池启动和产电性能的影响[J]. 化工学报, 2017, 68(3):1205-1210. [11] Wu Y, Yang Q, Zeng Q, et al.Enhanced low C/N nitrogen removal in an innovative microbial fuel cell (MFC) with electroconductivity aerated membrane (EAM) as biocathode[J]. Chem Eng J, 2017, 316:315-322. [12] Manz W, Amann R, Ludwig W, et al. Phylogenetic Oligodeoxynucleotide Probes for the Major Subclasses of Proteobacteria: Problems and Solutions[J]. Syst & Appl Microbiol, 1992, 15(4):593-600. [13] Pous N, Puig S, Balaguer M D, et al. Cathode potential and anode electron donor evaluation for a suitable treatment of nitrate-contaminated groundwater in bioelectrochemical systems[J]. Chem Eng J, 2015, 263(46):151-159. [14]张永宜. 氨迁移对阴极反硝化双室微生物燃料电池产电性能及脱氮效率的影响实验[D]. 西安,长安大学, 2014. [15] Ghosh S, Inganäs O. Conducting Polymer Hydrogels as 3D Electrodes: Applications for Supercapacitors[J]. Adv Mater, 1999, 11(14):1214-1218. [16] Fei Z, Jian L, Zhen H. A new method for nutrients removal and recovery from wastewater using a bioelectrochemical system[J]. Bioresource Technol, 2014, 166(8):630-634. [17] Anthonisen A C, Loehr R C, Prakasam T B, et al. Inhibition of nitrification by ammonia and nitrous acid.[J]. J Water Pollut Control Fed, 1976, 48(5):835. [18] Cho S, Fujii N, Lee T, et al. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor[J]. Bioresource Technol, 2011, 102(2):652-659. [19] Amann R I, Binder B J, Olson R J, et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations.[J]. Appl & Environ Microb, 1990, 56(6):1919. [20] Daims H, Brühl A, Amann R, et al. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set.[J]. Syst & Appl Microbiol, 1999, 22(3):434-444. [21] Juretschko S, Timmermann G, Schmid M, et al. Combined Molecular and Conventional Analyses of Nitrifying Bacterium Diversity in Activated Sludge: Nitrosococcus mobilis, and Nitrospira -Like Bacteria as Dominant Populations[J]. Appl & Environ Microb, 1998, 64(8):3042-3051. [22] Wagner M, Rath G, Amann R, et al. In situ, Identification of Ammonia-oxidizing Bacteria[J]. Syst & Appl Microbiol, 1995, 18(2):251-264. [23] Zhang G, Zhang H, Ma Y, et al. Membrane filtration biocathode microbial fuel cell for nitrogen removal and electricity generation.[J]. Enzyme & Microb Tech, 2014, 60(60):56. [24] Thayanukul P, Zang K, Janhom T, et al. Concentration-dependent response of estrone-degrading bacterial community in activated sludge analyzed by microautoradiography-fluorescence in situ hybridization.[J]. Water Res, 2010, 44(17):4878. [25] Beschkov V, Velizarov S, Agathos S N, et al. Bacterial denitrification of waste water stimulated by constant electric field[J]. Biochem Eng J, 2004, 17(2):141-145. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号