Preparation of CEL/CS blend nanofiltration membranes for dye desalination |
Authors: CHEN Huijuan1, JI Xiaosheng1, CHEN Xiaoxiang2, ZHANG Lin3 |
Units: 1.Ocean College,Zhejiang University,Zhoushan,316021,China;2. Hangzhou Ultrafiltration & Nanofiltration Water Purification Equipment Co. Ltd,Hangzhou,311243,China;3.College of Chemical and Biological Engineering,Zhejiang University,Hangzhou,310027,China |
KeyWords: cellulose; chitosan; ionic liquid; dye desalination; nanofiltration membrane |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2018,38(4):27-32 |
Abstract: |
Cellulose is applied to prepare nanofiltration membrane successfully due to excellent mechanical stability and film-forming property. However, the bare cellulose membrane surface is negatively charged, and then it has high rejection of low molecular weight water-soluble dyes and Na2SO4, so the removal rate of Na2SO4 remains to be further improved. In this study, a weak positively charged CEL/CS blend NF membrane was prepared successfully via phase inversion method using cellulose and chitosan as membrane materials, ionic liquid 1-ethyl-3-methyl-imidazolium acetate (EMIMAc) and DMSO as solvents, water as coagulation bath on a non-woven fabric substrate. The results showed that the prepared blend nanofiltration membrane had the best separation performance when the mass ratio of cellulose to chitosan was 1:1. The membrane had a high rejection of direct dye (congo red:99.99%) and the retention of reactive dyes were 80-90% (reactive black 5 and reactive blue 19) under the cross-flow conditions of 0.5 MPa. However, the rejection of inorganic salts were low, such as NaCl and Na2SO4 were below 10% and 1% respectively. The above results showed that the membrane enabled efficient separation of dye and salt. |
Funds: |
“973”计划项目(2015CB655303) |
AuthorIntro: |
第一作者简介:陈慧娟(1993.12-),女,安徽合肥人,硕士研究生,从事水处理纳滤膜的制备及应用,E-mail:chenhuijuan@zju.edu.cn 通讯作者,E-mail:linzhang@zju.edu.cn |
Reference: |
[1] Y M Slokar, A M Le Marechal. Methods of decoloration of textile wastewaters[J]. Dyes Pigments, 1998, 37(4): 335-356. [2] A Rozzi, M Antonelli, M Arcari. Membrane treatment of secondary textile effluents for direct reuse[J]. Water Sci Technol, 1999, 40(4-5):409-416. [3] M Amirilargani, M Sadrzadeh, E J R Sudholter, et al. Surface modification methods of organic solvent nanofiltration membranes[J]. Chemical Engineering Journal, 2016, 289:562-582. [4] S P Sun, T A Hatton, S Y Chan, et al. Novel thin-film composite nanofiltration hollow fiber membranes with double repulsion for effective removal of emerging organic matters from water[J]. J Membrane Sci, 2012, 401:152-162. [5] Y K Ong, F Y Li, S P Sun, et al. Nanofiltration hollow fiber membranes for textile wastewater treatment: Lab-scale and pilot-scale studies[J]. Chem Eng Sci, 2014, 114:51-57. [6] R J Moon, A Martini, J Nairn, et al. Cellulose nanomaterials review: structure, properties and nanocomposites[J]. Chem Soc Rev, 2011, 40(7):3941-3994. [7] A Dufresne. Comparing the mechanical properties of high performances polymer nanocomposites from biological sources[J]. J Nanosci Nanotechno, 2006, 6(2):322-330. [8] X L Li, L P Zhu, B K Zhu, et al. High-flux and anti-fouling cellulose nanofiltration membranes prepared via phase inversion with ionic liquid as solvent[J]. Sep Purif Technol, 2011, 83:66-73. [9] T S Anokhina, T S Pleshivtseva, V Y Ignatenko, et al. Fabrication of Composite Nanofiltration Membranes from Cellulose Solutions in an [Emim] OAc-DMSO Mixture[J]. Petrol Chem+, 2017, 57(6):477-482. [10] Y P Zheng, G H Yao, Q B Cheng, et al. Positively charged thin-film composite hollow fiber nanofiltration membrane for the removal of cationic dyes through submerged filtration[J]. Desalination, 2013, 328:42-50. [11] P S Zhong, N Widjojo, T S Chung, et al. Positively charged nanofiltration (NF) membranes via UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater[J]. J Membrane Sci, 2012, 417:52-60. [12] 吴俊, 王军, 蒋淑红,等. PVC-SPES共混膜的制备及其在废水处理中的应用研究[J]. 水处理技术, 2014, 12:29-34. [13] R Jayakumar, D Menon, K Manzoor, et al. Biomedical applications of chitin and chitosan based nanomaterials-A short review[J]. Carbohyd Polym, 2010, 82(2):227-232. [14] L A Pothan, C Bellman, L Kailas, et al. Influence of chemical treatments on the electrokinetic properties of cellulose fibres[J]. J Adhes Sci Technol, 2002, 16(2):157-178. [15] J Y Lin, W Y Ye, M C Baltaru, et al. Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment[J]. J Membrane Sci, 2016, 514:217-228. [16] P Pradanos, J I Arribas, A Hernandez. Mass-Transfer Coefficient and Retention of Pegs in Low-Pressure Cross-Flow Ultrafiltration through Asymmetric Membranes[J]. J Membrane Sci, 1995, 99(1):1-20. [17] L Wang, N X Wang, G J Zhang, et al. Covalent Crosslinked Assembly of Tubular Ceramic-based Multilayer Nanofiltration Membranes for Dye Desalination[J]. Aiche J, 2013, 59(10):3834-3842. [18] P L Chen, X Ma, Z X Zhong, et al. Performance of ceramic nanofiltration membrane for desalination of dye solutions containing NaCl and Na2SO4[J]. Desalination, 2017, 404:102-111. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号