Position:Home >> Abstract

Synthesis and oxygen permeability of SDC-BCCF dual-phase oxygen permeable membrane materials
Authors: XIA Xin,MIAO Qiang,YANG Wei, LI Fang, LI Qiming*
Units: School of Chemistry, Chemical Engineering and Environmental Engineering,Liaoning Shihua University
KeyWords: Dual-phase oxygen permeable membrane; perovskite, oxygen flux; bulk diffusion; surface exchange
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2018,38(4):75-80

Abstract:
 In order to improve the stability and oxygen flux of oxygen permeable membrane materials, Ce0.8Sm0.2O1.9(50wt.%)-BaCe0.1Co0.3Fe0.6O3-σ(50wt.%)(SDC-BCCF) fluorite-perovskite dual-phase oxygen permeable membrane materials were synthesized by one-spot method, and the effect of operation temperature, membrane thickness and oxygen partial pressure gradient (sweeping gas rate) on oxygen flux of SDC-BCCF dual phase membranes were investigated. XRD patterns of SDC-BCCF show that fluorite SDC and perovskite BCCF phases could be homogeneously mixed in SDC-BCCF dual-phase materials. However, the refined XRD patterns reveal that trace mounts of perovskite BeCeO3 impure phase can still be identified. SEM images show that the dense SDC-BCCF dual-phase membrane disk can be obtained at 1450oC. Oxygen permeation tests demonstrated that oxygen flux of SDC-BCCF dual phase membranes can be improved by raising the temperature, reducing the membrane thickness and increasing the sweeping gas rate. It was found that the oxygen permeation flux can reach 0.71 ml.min-1.cm-2 at 950oC for SDC-BCCF membrane with a thickness of 0.5mm. The rate-determining step of SDC-BCCF dual-phase membranes was also checked in our experiment, which showed that the oxygen permeation for SDC-BCCF dual-phase membrane was determined by bulk diffusion when the membrane thickness is more than or equal to 0.7 mm. However, while the membrane thickness was decreased to less than 0.7 mm, the oxygen permeation of SDC-BCCF membranes transforms into the surface-exchange control.

Funds:
国家自然科学基金项目(21703091, 21201096);辽宁省教育厅资助项目 (L2010242);辽宁省教育厅辽宁石油化工大学石油化工重点实验室项目(LZ2015050);中国科学院煤制乙二醇及相关技术重点实验室资助项目。

AuthorIntro:
作者简介:苗强(1993年5月),男,本科,辽宁盘锦人,硕士在读,主要从事新型透氧膜材料及膜催化的研究工作,E-mail:xiaxin_001@163.com. 通讯联系人:李其明(1977-),男,副教授,博士学位;E-mail:lqm_dicp@163.com;研究方向:储氢能源与催化新材料。

Reference:
[1] 佟建华, 杨维慎, 邵宗平, 等. 新型含锆纯相钙钛矿型混合导体透氧膜[J]. 科学通报, 2000, 45(20):2167-2171.
[2] 李培培, 程继贵, 李世松,等. 钙钛矿型Ba0.5Sr0.5Co0.8Fe0.2O3-δ透氧膜材料的制备及其透氧性能的研究[J]. 人工晶体学报, 2015, 44(5):1183-1189.
[3] 沈秋婉, 郑瑛, 马飞艳,等. 钙钛矿型氧载体SrCo0.8Fe0.2O3-δ制氧性能的实验研究[J]. 工程热物理学报, 2014(1):192-195.
[4] 鲁辉, 张岩, 尹春玲. 钙钛矿型透氧膜及其在甲烷部分氧化中的应用[J]. 工业催化, 2011, 19(2):22-27.
[5] 程云飞, 赵海雷, 王治峰,等. 钙钛矿型透氧膜材料的结构特点与研究进展[J]. 稀有金属材料与工程, 2008, 37(12):002069-2074.
[6] 郑瑛, 边关, 罗聪,等. 钙钛矿型复合载氧体的制备及释氧性能研究[J]. 中国电机工程学报, 2011, 31(35):90-96.
[7] 张碧宇, 王鹏, 夏正伟,等. 钙钛矿型复合金属氧化物的研究进展[J]. 稀有金属与硬质合金, 2010, 38(4):63-68.
[8] Teraoka Y, Nobunaga T, Yamazoe N. Effect of cation substitution on the oxygen semipermeability of perovskite-type oxides.[J]. Chemistry Letters, 1988, 3(3):503-506.
[9] Zhu X, Cong Y, Yang W. Oxygen permeability and structural stability of BaCe0.15Fe0.85O3-σ , membranes[J]. Journal of Membrane Science, 2006, 283(1–2):38-44.
[10] Zhu X, Cong Y, Yang W. Effects of synthesis methods on oxygen permeability of BaCe0.15Fe0.85O3-σ , ceramic membranes[J]. Journal of Membrane Science, 2006, 283(1–2):158-163.
[11] Zhu X, Wang H, Yang W. Structural stability and oxygen permeability of cerium lightly doped BaFeO3-σ , ceramic membranes[J]. Solid State Ionics, 2006, 177(33–34):2917-2921.
[12] Wang H, Tablet C, Feldhoff A, et al. A Cobalt‐Free Oxygen‐Permeable Membrane Based on the Perovskite‐Type Oxide Ba0.5Sr0.5Zn0.2Fe0.8O3-σ[J]. Cheminform, 2005, 36(42):no-no.
[13] Yi J, Zuo Y, Liu W, et al. Oxygen permeation through a Ce0.8Sm0.2O2−δ–La0.8Sr0.2CrO3−δ , dual-phase composite membrane[J]. Journal of Membrane Science, 2006, 280(1–2):849-855.
[14] 李淼, 甄强, 沈培俊,等. BaCo0.7Fe0.2Nb0.1O3-δ透氧膜材料的性能研究[J]. 功能材料, 2008, 39(3):433-436.
[15] Wang B, Zhan M C, Zhu D C, et al. Oxygen permeation and stability of Zr0.8Y0.2O0.9-La0.8Sr0.2CrO3-δ , dual-phase composite[J]. Journal of Solid State Electrochemistry, 2006, 10(8):625-628.
[16] 周健儿, 吴建清, 朱志刚,等. 溶胶—凝胶法制备La1-xSrxCoyFe1-yO3-δ混合导体透氧膜粉料的研究[J]. 中国陶瓷工业, 2003, 10(2):1-8.
[17] 常杰善, 朱腾龙, 杨志宾,等. 烧结温度对La0.6Sr0.4Co0.2Fe0.8O3-δ-Gd0.1Ce0.9O2-δ双相复合透氧膜性能的影响[J]. 硅酸盐学报, 2015, 43(3):311-315.
[18] 延刚, 申梓刚, 胡行,等. LnBaCo2O5+δ(Ln=Gd,Nd,Sm,Pr)-Ba0.5Sr0.5Co0.8Fe0.2O3-δ双相混合导体透氧膜的制备及性能测试[J]. 材料导报, 2010, 24(s2):398-400.
[19] Liu J J, Liu T, Wang W D, et al. Zr0.84Y0.16O1.92 -La0.8Sr0.2Cr0.5Fe0.5O3-δ, dual-phase composite hollow fiber membrane targeting chemical reactor applications[J]. Journal of Membrane Science, 2012, 389(389):435-440.
[20] Kim S, Yang Y L, Jacobson A J, et al. Oxygen surface exchange in mixed ionic electronic conductor membranes[J]. Solid State Ionics, 1999, 121(1–4):31-36.
[21] Lee K J, Park J W, Yang J K, et al. Synthesis and optimization of nano-porous La0.6Sr0.4CoO3–δ on the oxygen separation membrane[J]. Materials Science & Engineering A, 2007, 449:774-777.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号