Position:Home >> Abstract

Preparation and their separation performance of La/Y doped silica membranes for dye wastewater treatment
Authors: ZHANG Huayu, LUO Fangying, JIANG Tingting, LI Chenhui, ZHANG Xiaoliang*
Units: (Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China)
KeyWords: silica membrane; rare earth; doped; dye wastewater
ClassificationCode:O613.72;TQ028.8
year,volume(issue):pagination: 2018,38(4):113-119

Abstract:
 La/Y doped silica membranes without defect were successfully prepared by sol-gel method with 1,2-bis(triethoxysilyl)ethane (BTESE) as precursors. The properties of silica sols and gels, and morphology and hydrothermal stability of silica membranes were characterized by TG, FTIR, XRD and SEM. The influence of La/Y ratios and calcination temperature on the separation performance through these silica membranes were investigated in positively charged crystal violet and negatively charged Congo red dye wastewater solutions. The results showed that their separation performance was improved for La/Y doped silica membranes, compared with pure BTESE-SiO2 membrane. And La50Y50-SiO2 silica membranes exhibited the best separation performance, which were prepared with La/Y ratio as 50/50% and calcinated at 300 oC. Moreover, the permeated flux over 5.0 L/(m2·h) and rejection for dye molecules of 100% were obtained when the test were conducted with initial concentration of crystal violet at 5 mg/L and that of Congo red at 20 mg/L. The separation performance through the silica membrane in negatively charged Congo red solutions were higher than those in positively charged crystal violet solutions. There were synergistic mechanism of molecular sieving and electrostatic adsorption effect during the separation process for dyes wastewater treatment. In addition, the La/Y doped silica membranes also exhibited excellent salt tolerance, indicating that these membranes would be used in the high-efficiency separation for high salinity dye wastewater treatment.

Funds:
国家自然科学基金(21566012);江西省杰出青年人才资助计划(20162BCB23025);江西省自然科学基金(20171BAB203020);江西师范大学研究生创新基金(YJS2017024)

AuthorIntro:
第一作者简介:张华宇(1992-),女,吉林省吉林市人,硕士,从事无机膜材料研究. *通讯作者,E-mail:xlzhang@jxnu.edu.cn

Reference:
 [1]陈婵维, 付忠田, 于洪蕾, 等. 染料废水处理技术进展[J]. 环境保护与循环经济, 2010, 30(4): 37-40.
[2]张晓龙, 吴兆亮, 郑辉杰, 等. 泡沫分离法处理结晶紫染料废水的工艺[J]. 过程工程学报, 2008, 8(6): 1116-1119.
[3]杨海洋. 臭氧/超声—臭氧/氨基二氧化硅处理结晶紫废水研究[D]. 南京:河南大学,2013.
[4]Vimonses V, Lei S, Jin B, et al. Kinetic study and equilibrium isotherm analysis of Congo red adsorption by clay materials [J]. Chem Eng J, 2009, 148 (2-3): 354-364.
[5]I?ik M, Sponza D T. Monitoring of toxicityand intermediates of C. I. Direct black 38 azo dye through decolorization in an anaerobic/aerobic sequential reactor system [J]. J Hazardous Mater, 2004, 114 (1-3): 29-39.
[6]任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64 (1):84-94.
[7]蔡惠如, 高从堦. 膜分离技术在染料行业中的应用[J]. 膜科学与技术, 2002, 22(2):37-39.
[8]纪惟惟, 王智杰, 马敬红, 等. 勃姆石改性氧化铝膜对刚果红染料吸附的研究[J]. 膜科学与技术, 2015, 35 (3): 57-62.
[9]Zhang X, Wang D K, Lopez P R S, et al.Fabrication of nanostructured TiO2 hollow fiber photocatalytic membrane and application for wastewater treatment [J]. Chem Eng J, 2014, 236: 314-322.
[10]Meng L, Kanezashi M, Wang J, et al. Permeation properties of BTESE-TEOS organosilica membranes and application to O2/SO2 gas separation [J]. J Membr Sci, 2015, 496: 211-218. 
[11]Ballinger B, Motuzas J, Smart S, et al. Gas permeation redox effect on binary lanthanum cobalt silica membranes with enhanced silicate formation [J]. J Membr Sci, 2015, 489: 220-226.
[12]Kanezashi M, Fuchigami D, Yoshioka T, et al. Control of Pd dispersion in sol–gel-derived amorphous silica membranes for hydrogen separation at high temperatures [J]. J Membr Sci, 2013, 439: 78-86.
[13]Zhang X L, Yamada H, Saito T, et al.Development of hydrogen-selective triphenylmethoxysilane-derived silica membranes with tailored pore size by chemical vapor deposition [J]. J Membr Sci, 2016, 499: 28-35.
[14]Zhang X L, Akamastu K, Nakao S-I. Hydrogen separation in hydrogen-methylcyclohexane-toluene gaseous mixtures through triphenylmethoxysilane-derived silica membranes prepared by chemical vapor deposition [J]. Ind Eng Chem Res, 2016, 55 (18): 5395-5402.
[15]Zhang S, Zeng M, Li J, et al. Porous magnetic carbon sheets from biomass as an adsorbent for the fast removal of organic pollutants from aqueous solution [J]. J Mater Chem A, 2014, 2: 4391-4397.
[16]Pelekani C, Snoeyink V L. A kinetic and equilibrium study of competitive adsorption between atrazine and Congo red dye on activated carbon: the importance of pore size distribution [J]. Carbon, 2001, 39: 25-37. 
[17]Ma Y, Kanezashi M, Tsuru T. Preparation of organic/inorganic hybrid silica using methyltriethoxysilane and tetraethoxysilane as co-precursors [J]. J Sol-Gel Sci Technol, 2010, 53 (1): 93-99.
[18]Song H, Zhao S, Lei J, et al. Pd-doped organosilica membrane with enhanced gas permeability and hydrothermal stability for gas separation [J]. J Membr Sci, 2016, 51(13): 6275-6286.
[19]陈水挟, 曾汉民, 陆耘. 利用染料吸附评价活性炭纤维结构的初步研究[J]. 新型炭材料, 1999, 14 (4): 53-58. 
[20]Zheng S X, Mi B X. Emerging investigators series: silica-crosslinked graphene oxide membrane and its unique capability in removing neutral organic molecules from water [J]. Environ. Sci.: Water Res., 2016, 2: 717-725. 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号