Position:Home >> Abstract

DVB Modified Superhydrophobic Fibrous Membranes and Their Applications in Membrane Distillation
Authors: Cong Shuo1, Dong Jianhua1, Guo Fei1
Units: Key laboratory of Ocean Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
KeyWords: polyacrylonitrile; electrospinning; hydrophobic modification; membrane distillation; desalination
ClassificationCode:TQ 028.8;TQ342+.31
year,volume(issue):pagination: 2018,38(5):104-112

Abstract:
 Divinylbenzene (DVB) is a kind of low-energy monomer which is also environmental friendly. In order to replace 1H, 1H, 2H, 2H-perfluorodecyl acrylate (PFDA), DVB was used as the precursor for initiated chemical vapor deposition (iCVD). In this study, Polyacrylonitrile (PAN) fibrous membranes were prepared by electrospinning. The membranes were transferred from hydrophilic to superhydrophobic by iCVD, and successfully applied in membrane distillation. The morphology, wettability, liquid entry pressure (LEP), and thickness of the membranes were characterized by scanning electron microscope, water contact angle measurement instrument, LEP test equipment, and atomic force microscopy (AFM). A set of iCVD treated PAN fibrous membranes with the fiber diameters ranging from 0.23 μm to 0.81 μm were tested for membrane distillation using a lab-scale air gap membrane distillation unit. The electrospun fibers were found to be randomly oriented. The morphology of fibrous membranes after surface modification showed no obvious change. The permeate flux was 1.5~22 kg/m2/h when the temperature difference between the feed solution and condensing plate was 13~59 ℃. The salt rejection ratios were all larger than 99.9 %. With decreasing the fiber diameter, the liquid entry pressure, the water contact angle, and the porosity were observed to increase, from 49 kPa to 128 kPa, from 84 % to 89.5 %, from 137 ° to 147 °, respectively. The results show that the fiber diameter plays an important role in the MD performance in terms of permeate flux, salt rejection ratio, and liquid entry pressure.

Funds:
中央高校基本科研业务费专项基金(DUT17JC05)

AuthorIntro:
第一作者简介:从硕(1994—),男,安徽宿州人,博士研究生,研究方向:薄膜蒸馏。 通讯作者:郭飞(1983—),男,教授,博士生导师。研究方向:先进膜材料,碳素纳米材料。 E-mail: feiguo@dlut.edu.cn.

Reference:
 [1]. Drioli, E., A. Ali and F. Macedonio. Membrane distillation: Recent developments and perspectives[J]. Desalination, 2015. 356: 56-84.
 [2]. Martinetti, C.R., A.E. Childress and T.Y. Cath. High recovery of concentrated RO brines using forward osmosis and membrane distillation[J]. Journal of Membrane Science, 2009. 331(1): 31-39.
 [3]. Schneider, K. and T.J. Van Gassel.   Membrandestillation[J]. Chemie Ingenieur Technik, 1984. 56(7): 514-521.
 [4]. Wang, P. and T.S. Chung. Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring[J]. Journal of Membrane Science, 2015. 474(2): 39-56.
 [5]. 申龙,高瑞昶. 膜蒸馏技术最新研究应用进展[J]. 化工进展, 2014. 33(2): 289-297.
 [6]. 王许云, 张林,陈欢林. 膜蒸馏技术最新研究现状及进展[J]. 化工进展, 2007. 26(2): 168-172.
 [7]. Lawson, K.W. and D.R. Lloyd. Membrane distillation: Review[J]. Journal of Membrane Science, 1997. 124(1): 1-25.
 [8]. Cai, J. and F. Guo. Study of mass transfer coefficient in membrane desalination[J]. Desalination, 2017. 407: 46-51.
 [9]. Cath, T.Y., V.D. Adams and A.E. Childress. Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement[J]. Journal of Membrane Science, 2004. 228(1): 5-16.
[10]. Drioli, E., Y. Wu and V. Calabro. Membrane distillation in the treatment of aqueous solutions ☆[J]. Journal of Membrane Science, 1987. 33(3): 277-284.
[11]. Gryta, M.. The concentration of geothermal brines with iodine content by membrane distillation[J]. Desalination, 2013. 325(20): 16-24.
[12]. Feng, C., et al. Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane[J]. Journal of Membrane Science, 2008. 311(1-2): 1-6.
[13]. Francis, L., et al. PVDF hollow fiber and nanofiber membranes for fresh water reclamation using membrane distillation[J]. Journal of Materials Science, 2014. 49(5): 2045-2053.
[14]. Liao, Y., et al. Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation[J]. Journal of Membrane Science, 2013. 425-426(1): 30-39.
[15]. Shaulsky, E., et al. Post-fabrication modification of electrospun nanofiber mats with polymer coating for membrane distillation applications[J]. Journal of Membrane Science, 2017. 530: 158-165.
[16]. Lalia, B.S., et al., Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation[J]. Journal of Membrane Science, 2013. 428(2): 104-115.
[17]. 王晓琴等. 膜蒸馏技术在水处理中的应用[J]. 工业水处理, 2008. 28(12): 18-21.
[18]. Subramanian, S. and R. Seeram. New directions in nanofiltration applications - Are nanofibers the right materials as membranes in desalination? [J]. Desalination, 2013. 308: 198-208.
[19]. Ahmed, F.E., B.S. Lalia and R. Hashaikeh. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination, 2015. 356: 15-30.
[20]. Guo, F., et al. Desalination by Membrane Distillation using Electrospun Polyamide Fiber Membranes with Surface Fluorination by Chemical Vapor Deposition. Acs Applied Materials & Interfaces, 2015. 7(15): 8225-8232.
[21]. Choong, L.T., Z. Khan and G.C. Rutledge. Permeability of electrospun fiber mats under hydraulic flow[J]. Journal of Membrane Science, 2014. 451(1): 111-116.
[22]. 覃小红等. 静电纺丝聚丙烯腈纳米纤维工艺参数与纤维直径关系的研究[J]. 东华大学学报(自然科学版), 2005. 31(6): 16-22.
[23]. Yang, M.C. and T.Y. Liu. The permeation performance of polyacrylonitrile/polyvinylidine fluoride blend membranes[J]. Journal of Membrane Science, 2003. 226(1-2): 119-130.
[24]. K.K. Gleason. CVD Polymers: Fabrication of Organic Surfaces and Devices. [M]. Wiley-VCH, 2015: 1-11.
[25]. Ma, M., et al. Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition[J]. Macromolecules, 2005. 38(23): 9742-9748.
[26]. Greenlee, L.F., et al. Reverse osmosis desalination: water sources, technology, and today's challenges[J]. Water 
Research, 2009. 43(9): 2317-48.
[27]. Warsinger, D.M., et al. Combining air recharging and membrane superhydrophobicity for fouling prevention in membrane distillation[J]. Journal of Membrane Science, 2016. 505: 241-252.
[28]. Buck, R.C., et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins[J]. Integrated Environmental Assessment & Management, 2011. 7(4): 513-541.
[29]. Petruczok, C.D., R. Yang and K.K. Gleason. Controllable Cross-Linking of Vapor-Deposited Polymer Thin Films and Impact on Material Properties[J]. Macromolecules, 2013. 46(5): 1832-1840.
[30]. Cai, J., et al. Membrane desalination using surface fluorination treated electrospun polyacrylonitrile membranes with nonwoven structure and quasi-parallel fibrous structure[J]. Desalination, 2018. 429: 70-75.
[31]. Cassie, A.B.D. and S. Baxter. Wettability of porous surfaces[J]. Trans Faraday Soc, 1944. 40(1): 546-551.
[32]. Vargaftik, N.B., B.N. Volkov and L.D. Voljak. International Tables of the Surface Tension of Water[J]. Journal of Physical & Chemical Reference Data, 1983. 12(3): 817-820.
[33]. Alklaibi, A.M. and N. Lior. Transport analysis of air-gap membrane distillation[J]. Journal of Membrane Science, 2005. 255(1-2): 239-253.
[34]. Darcy, H. Les Fontaines Publiques de la Ville de Dijon. Dalmont[M], Paris, 1856.
[35]. Yang, C., et al. Effective evaporation of CF4 plasma modified PVDF membranes in direct contact membrane distillation[J]. Journal of Membrane Science, 2015. 482(1): 25-32

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号