Position:Home >> Abstract

Fluorotriphenylenediamine structure reinforced polyimide gas permeability
Authors: WANG Hanli1,2, RUAN Xuehua1, DAI YAN1, HE Gaohong1, SHAN Timei2, WANG LEI1,2, MENG Xiangqing2, XU Guofeng2
Units: 1.State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Liaoning Province Engineering Laboratory for Petrochemical Separation Technologies, School of Petroleum &Chemical Engineering, Dalian University of Technology, Panjin 124221, China; 2. Shandong Huaxia Shenzhou New Material Co. Ltd., State Key Laboratory of Fluorine Containing Functional Membrane of Dongyue Group, Zibo 255000, China
KeyWords: structural design; fluorine-containing polyimide; gas permeability; molecular simulation
ClassificationCode:TQ028.3
year,volume(issue):pagination: 2018,38(6):34-40

Abstract:
 The incorporation of stereo side groups in the glassy polymer is an effective method to reduce the accumulation of the main chain, increase the free volume, and increase the gas permeability of the polymer. In this paper, the hexafluorotriphenylenediamine(BABTFMM) with tri-dimensional structure was polycondensed with hexafluoro dianhydride (6FDA) to prepare polyimides with high gas permeabilities, and using Grand Canonical Monte Carlo and molecular dynamics methods to predict its gas permeation separation performance. Homogeneous membranes were prepared for experimental test. The results of molecular simulations show that the hexafluoroxylene side groups in the diamine monomer is useful to increase the main chain spacing of the polyimide, reduce the packing density, and increase the free volume by the effect of steric hindrance and main chain configuration restriction, as a result, the gas permeability of 6FDA-BABTFMM polyimides is improved. Homogenous films of 6FDA-BABTFMM and 6FDA-ODA fluorine-containing polyimide were prepared for gas permeability test. The gas permeation performance test results are consistent with those of the molecular simulation. The permeability of 6FDA-BABTFMM is significantly higher than that of 6FDA-ODA polyimide, and the permeation rates of oxygen, nitrogen, methane, and carbon dioxide are 75.2, 20.5, 17.2, 311.3 bar, respectively.

Funds:
国家自然科学基金青年基金(21606035, 21706023);中国博士后科学基金资助项目(2018M631167)

AuthorIntro:
第一作者简介:王汉利(1974-),男,山东滨州博兴人,博士研究生,高级工程师,主要研究方向为含氟膜材料制备及气体膜分离,Email:whl7327@126.com;  通讯作者,Email:hgaohong@dlut.edu.cn

Reference:
 [1] 张鑫巍,范广宇,李恕广,等. 6FDA型聚酰亚胺共聚物(6FDA-TMPDA-DABA)的合成及气体渗透性能测试 [J]. 膜科学与技术, 2002,22(2):5-9.
[2] 唐娜, 李彦, 项军,等. 化学亚胺化法聚酰亚胺超滤膜的制备及表征[J]. 膜科学与技术, 2016,36(6):61-69.
[3] 丑树人, 任吉中, 李晖,等. 高性能聚醚酰亚胺中空纤维气体分离膜的制备及分离性能[J]. 膜科学与技术, 2010,30(3):21-26.
[4] Stem S A, Mi,Yamamoto H.Structuer /Permebaility Relationships of Polyimide Membranes. Applications to the Separation of Gas Mixtures.J Polym Sci:Part B:Polym B: Polym Phy, 1989,27,1887-1909.
[5] Langsam M, Burgoyne W F. Effects of diamine monomer structure on the gas permeability of polyimides. I. Bridged diamines[J]. Journal of Polymer Science Part A Polymer Chemistry, 1993, 31(4):909-921.
[6] 黄旭,邵路,孟令辉,等.聚酰亚胺基气体分离膜的改性方法及其最新进展[J]. 膜科学与技术, 2009,29(1):101-108.
[7] Tong H, Hu C, Yang S, et al. Preparation of fluorinated polyimides with bulky structure and their gas separation performance correlated with microstructure[J]. Polymer, 2015, 69:138-147.
[8] 张立书. 分子模拟法研究乙烯/1-己烯的气体渗透性及分子结构影响因素的分析[D]. 北京:北京化工大学, 2008.
[9] Pavel D, Shanks R. Molecular dynamics simulation of diffusion of O2, and CO2, in blends of amorphous poly(ethylene terephthalate) and related polyesters[J]. Molecular Simulation, 2003, 28(21):939-969.
[10] 陈瑜. 分子模拟研究气体在含氟聚酰胺酰亚胺膜中的渗透行为[D]. 厦门:厦门大学, 2009.
[11] Matthias Heuchel, Dieter Hofmann, Pullumbi P. Molecular Modeling of Small-Molecule Permeation in Polyimides and Its Correlation to Free-Volume Distributions[J]. Macromolecules, 2004, 37(1):201-214.
[12] Karayiannis N C, Mavrantzas V G, Theodorou D N. Detailed Atomistic Simulation of the Segmental Dynamics and Barrier Properties of Amorphous Poly(ethylene terephthalate) and Poly(ethylene isophthalate)[J]. Macromolecules, 2004, 37(8):2978-2995.
[13] Branken D J, Krieg H M, Lachmann G, et al. Modelling sorption and diffusion of NF3, and CF4, in Teflon AF perfluoropolymer membranes[J]. Journal of Membrane Science, 2014, 470(470):294-306.
[14] Sacristan J, Mijangos C. Free Volume Analysis and Transport Mechanisms of PVC Modified with Fluorothiophenol Compounds. A Molecular Simulation Study[J]. Macromolecules, 2010, 43(17):7357-7367.
[15] 代岩,杨晓辰,盖丽梅,郗元.气体在聚三氟丙基甲基硅氧烷膜中的渗透性[J/OL].现代化工:1-6[2018-05-17].http://123.206.67.90:2066/kcms/detail/11.2172.TQ.20180326.0935.044.html.
[16] Yampolskii Y. Polymeric Gas Separation Membranes[J]. Macromolecules, 1999, 45(8): 3298-3311.
[17] Fried J R. Gas Diffusion and Solubility in Poly(organophosphazenes): Results of Molecular Simulation Studies[J]. Journal of Inorganic & Organometallic Polymers & Materials, 2006, 16(4):407-418.
[18] Pryde C A. IR studies of polyimides I:effects of chemical and physical changes during cure[J]. Journal of Polymer Science,Part A:Polymer Chemistry,1989,27:711-754.
[19] 宋超然,徐勇,等. 低热膨胀系数共聚型聚酰亚胺薄膜的制备与表征[J]. 现代塑料加工应用,2018,30(1):16-18
[20] Yeom C K, Lee J M, Hong Y T, et al. Analysis of permeation transients of pure gases through dense polymeric membranes measured by a new permeation apparatus[J]. Journal of Membrane Science, 2000, 166(1):71-83.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号