Research progress on organic micropollutants removal by biocatalytic membrane |
Authors: Fangfang Zhou, Jianquan Luo*, Xiangrong Chen, Yinhua Wan |
Units: State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China |
KeyWords: Membrane technology; biocatalytic membrane; organic micropollutant; enzymatic membrane reactor; enzyme immobilization |
ClassificationCode:TQ050.4 |
year,volume(issue):pagination: 2018,38(6):121-128 |
Abstract: |
Organic micropollutants are detrimental to human health, and the efficient and green removal of the micropollutants becomes a research hotspot nowadays. As an emerging biomimetic separation technology, biocatalytic membrane technology integrates biologic catalysis and membrane separation functions, which can be applied for highly efficient removal of organic micropollutants under mild operating conditions. This review summarized the mechanisms, properties and preparation methods of the biocatalytic membrane as well as its applications in removal of industrial pollutants, pharmaceuticals and personal care products, pesticides and biotoxins. This review is also expected to provide theoretical guidance for the further development and application of biocatalytic membrane technology. |
Funds: |
国家重点研发计划(2017YFC1600906),国家自然科学基金青年项目(21506229) |
AuthorIntro: |
第一作者简介: 周芳芳(1995-),女,山东聊城人,硕士研究生,主要从事酶固定化和真菌毒素去除研究,Email:zhoufangfang171@mails.ucas.ac.cn. 通讯作者,Email: jqluo@ipe.ac.cn |
Reference: |
[1]De Cazes M, Abejón R, Belleville M P, et al. Membrane bioprocesses for pharmaceutical micropollutant removal from waters[J]. Membranes, 2014, 4(4): 692-729. [2]姜春龙. 微量/痕量有机污染物前处理技术研究进展[J]. 黑龙江环境通报, 2012 (2): 54-57. [3]Dai Y, Yao J, Song Y, et al. Enhanced adsorption and degradation of phenolic pollutants in water by carbon nanotube modified laccase-carrying electrospun fibrous membranes[J]. Environ Sci Nano, 2016, 3(4): 857-868. [4]Abejón R, Belleville M P, Sanchez-Marcano J. Design, economic evaluation and optimization of enzymatic membrane reactors for antibiotics degradation in wastewaters[J]. Sep Purif Technol, 2015, 156: 183-199. [5]Cao X, Luo J, Woodley J M, et al. Bioinspired multifunctional membrane for aquatic micropollutants removal[J]. ACS Appl Mater Interf, 2016, 8(44): 30511-30522. [6]Silva C P, Otero M, Esteves V. Processes for the elimination of estrogenic steroid hormones from water: a review[J]. Environ Pollut, 2012, 165: 38-58. [7]李鹏, 赖卫华, 金晶. 食品中真菌毒素的研究[J]. 农产品加工(学刊), 2005, 3: 12-15. [8]De Cazes M, Belleville M P, Petit E, et al. Design and optimization of an enzymatic membrane reactor for tetracycline degradation[J]. Catal Today, 2014, 236: 146-152. [9]吕炜. 饮用水中重点有机污染物对人体健康危害的研究进展[J]. 中国预防医学杂志, 2007, 8(5): 668-670. [10]Abejón R, De Cazes M, Belleville M P, et al. Large-scale enzymatic membrane reactors for tetracycline degradation in WWTP effluents[J]. Water Res, 2015, 73: 118-131. [11]崔芳, 袁博. 再生水中微量有机污染物去除的研究进展[J]. 工业水处理, 2012, 32(8): 9-14. [12]黄德, 王学松. 酶膜生物反应器及其应用[J]. 现代化工, 1988, 1: 59-63. [13]邓茂先, 陈祥贵. 环境内分泌干扰物研究进展[J]. 国外医学: 卫生学分册, 2000, 27(2): 65-68. [14]王梦乔, 周庆, 李爱民. 环境水体微污染有机物及其去除技术研究进展[J]. 环境污染与防治, 2012, 34 (6): 71-76. [15]胡洪营, 王超, 郭美婷. 药品和个人护理用品 (PPCPs) 对环境的污染现状与研究进展[J]. 生态环境, 2005, 14(6): 947-952. [16] Silva C P, Otero M, Esteves V. Processes for the elimination of estrogenic steroid hormones from water: a review[J]. Environ Pollut, 2012, 165: 38-58. [17]李梦华, 孔维军, 杨美华, 等. 化妆品中有毒有害物质污染现状及其检测方法研究进展[J]. 中华中医药杂志, 2016, 31(6): 2239-2242. [18]Xu R, Si Y, Wu X, et al. Triclosan removal by laccase immobilized on mesoporous nanofibers: strong adsorption and efficient degradation[J]. Chem Eng J, 2014, 255: 63-70. [19]Fan J, Luo J, Wan Y. Membrane chromatography for fast enzyme purification, immobilization and catalysis: A renewable biocatalytic membrane[J]. J Membr Sci, 2017, 538: 68-76. [20]曹晓彤. 基于聚多巴胺仿生涂层的分离, 吸附, 催化多功能膜的制备, 优化及应用[D]. 中国科学院大学 (中国科学院过程工程研究所), 2017. [21]代云容, 袁钰, 于彩虹, 等. 静电纺丝纤维膜固定化漆酶对水中双酚 A 的降解性能[J]. 环境科学学报, 2015, 35(7): 2107-2113. [22] 梁刚. 纳米生物催化降解环境水中酚类污染物的机理研究[D]. 吉林大学, 2016. [23] Xu R, Chi C, Li F, et al. Immobilization of horseradish peroxidase on electrospun microfibrous membranes for biodegradation and adsorption of bisphenol A[J]. Bioresource technol, 2013, 149: 111-116. [24]Giorno L, Drioli E. Biocatalytic membrane reactors: applications and perspectives[J]. Trends Biotechnol, 2000, 18(8): 339-349. [25]石陆娥. 酶膜生物反应器制备核苷酸的研究[D]. 杭州: 浙江工业大学, 2007. [26]王振刚. 基于聚丙烯腈的分离膜制备与酶固定化研究[D]. 杭州: 浙江大学, 2008. [27]Gupta S, Bhattacharya A, Murthy C N. Tune to immobilize lipases on polymer membranes: techniques, factors and prospects[J]. Biocatal Agric Biotechnol, 2013, 2(3): 171-190. [28]Cao X, Luo J, Woodley J M, et al. Mussel-inspired co-deposition to enhance bisphenol A removal in a bifacial enzymatic membrane reactor[J]. Chem Eng J, 2018, 336: 315-324. [29]Datta S, Christena L R, Rajaram Y R S. Enzyme immobilization: an overview on techniques and support materials[J]. 3 Biotech, 2013, 3(1): 1-9. [30]罗建泉, 曹晓彤, 吴媛媛, 等. 基于 “膜污染思维” 的酶固定化方法及其应用[J]. 膜科学与技术, 2017, 37(3): 97-103. [31]Ji C, Hou J, Chen V. Cross-linked carbon nanotubes-based biocatalytic membranes for micro-pollutants degradation: performance, stability, and regeneration[J]. J Membr Sci, 2016, 520: 869-880. [32]Li S, Luo J, Wan Y. Regenerable biocatalytic nanofiltration membrane for aquatic micropollutants removal[J]. J Membr Sci, 2018, 549: 120-128. [33]Lee C H, Lin T S, Mou C Y. Mesoporous materials for encapsulating enzymes[J]. Nano Today, 2009, 4(2): 165-179. [34]Hilal N, Nigmatullin R, Alpatova A. Immobilization of cross-linked lipase aggregates within microporous polymeric membranes[J]. J Membr Sci, 2004, 238(1-2): 131-141. [35]Mahlicli F Y, ?en Y, Mutlu M, et al. Immobilization of superoxide dismutase/catalase onto polysulfone membranes to suppress hemodialysis-induced oxidative stress: A comparison of two immobilization methods[J]. J Membr Sci, 2015, 479: 175-189. [36]Zhang H, Luo J, Li S, et al. Biocatalytic Membrane Based on Polydopamine Coating: A Platform for Studying Immobilization Mechanisms[J]. Langmuir, 2018, 34(8): 2585-2594. [37]Xu R, Cui J, Tang R, et al. Removal of 2, 4, 6-trichlorophenol by laccase immobilized on nano-copper incorporated electrospun fibrous membrane-high efficiency, stability and reusability[J]. Chem Eng J, 2017, 326: 647-655. [38]Hou J, Dong G, Ye Y, et al. Enzymatic degradation of bisphenol-A with immobilized laccase on TiO2 sol–gel coated PVDF membrane[J]. J Membr Sci, 2014, 469: 19-30. [39]Ji C, Hou J, Wang K, et al. Single‐Enzyme Biofuel Cells[J]. Angew Chem, 2017, 129(33): 9894-9898. [40]Ji C, Hou J, Wang K, et al. Biocatalytic degradation of carbamazepine with immobilized laccase-mediator membrane hybrid reactor[J]. J Membr Sci, 2016, 502: 11-20. [41]Taheran M, Naghdi M, Brar S K, et al. Covalent Immobilization of laccase onto nanofibrous membrane for degradation of pharmaceutical residues in water[J]. ACS Sustain Chem Eng, 2017, 5(11): 10430-10438. [42]Gebreyohannes A Y, Mazzei R, Yahia Marei Abdelrahim M, et al. Phosphotriesterase-magnetic nanoparticles bioconjugates with improved enzyme activity in a biocatalytic membrane reactor[J]. Bioconjugate chem, 2018, 29 (6): 2001–2008. [43]Zeinvand-Lorestani H, Sabzevari O, Setayesh N, et al. Comparative study of in vitro prooxidative properties and genotoxicity induced by aflatoxin B1 and its laccase-mediated detoxification products[J]. Chemosphere, 2015, 135: 1-6. [44]Li S, Luo J, Fan J, et al. Aflatoxin B1 removal by multifunctional membrane based on polydopamine intermediate layer[J]. Sep Purif Technol, 2018, 199: 311-319. [45]Becker D, Rodriguez-Mozaz S, Insa S, et al. Removal of endocrine disrupting chemicals in wastewater by enzymatic treatment with fungal laccases[J]. Org Process Res Dev, 2017, 21(4): 480-491. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号