Position:Home >> Abstract

Authors:
Units:
KeyWords:
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2020,40(2):45-52

Abstract:
A potassium-doped K0.1Sr0.9Co0.8Fe0.2O3-?(KSCF) perovskite material was successfully prepared by a sol-gel method. Oxygen permeability, structural stability and rate-determined step were investigated systematically. XRD characterization shows that while the potassium doping content is lower than or equal to 10%, KSCF cubic perovskite phase can be obtained. SEM results show that the highly dense KSCF membrane disk can be attained at 1220oC. Moreover, KSCF membrane disk possesses excellent mechanical strength under the long-term air condition, which cannot be disintegrated spontaneously as SrCo0.8Fe0.2O3-? material (SCF). Oxygen permeation test shows that the increase of operation temperature, the decrease of membrane thickness and the increase of purge gas flow rate are beneficial to improve oxygen permeation flux of KSCF membranes. Especially, it can be found that oxygen flux of KSCF membrane with a thickness of 0.5mm can reach about 2.65ml·cm-2·min-1 at 950oC. Further comparison experiment indicates that oxygen permeability of KSCF membrane is also higher than SCF under the same measurement conditions. Through investigating the rate-determining steps of KSCF membranes, it can be found that while the KSCF membrane thickness is lower than 0.7mm, oxygen permeation of KSCF membranes is determined by surface exchange process. While KSCF membrane thickness is higher than 0.7mm, their oxygen permeation is determined by bulk diffusion process.

Funds:
国家自然科学基金项目(21703091, 21201096);辽宁省教育厅资助项目 (L2019009);辽宁省教育厅辽宁石油化工大学石油化工重点实验室项目(LZ2015050)

AuthorIntro:
第一作者简介:刘力魁(1993年-),男,本科,河南新乡人,硕士在读,主要从事新型透氧膜材料及膜催化的研究工作. 通讯联系人:李其明,E-mail:lqm_dicp@163.com

Reference:
[1] 苗强, 夏鑫, 杨微, 等. SDC-BCCF双相透氧膜材料的合成及透氧性能研究[J]. 膜科学与技术, 2018(4):75-80.
[2] Shi L, Wang S, Lu T N, et al. High CO2-tolerance oxygen permeation dual-phase membranes Ce0.9Pr0.1O2-δ -Pr0.6Sr0.4 Fe0.8Al0.2O3-δ[J]. Journal of Alloys and Compounds, 2019, 806: 500-509.
[3] Tsai C Y. Dense perovskite membrane reactors for partial oxidation of methane to syngas[J]. AIChE Journal, 2010, 43(S11):2741-2750.
[4] Markov A, Merkulov O V, Patrakeev M V, et al. Hydrogen and synthesis gas co-production on oxygen membranes of mixed conductor: Scale-sensitive features of the process[J]. International Journal of Hydrogen Energy, 2019, 44(49): 26807-26815.
[5] 佟建华, 杨维慎. 钙钛矿型氧化物混合导体透氧膜材料的选择[J]. 膜科学与技术, 2003, 23(1): 33-42.
[6] Lee S, Sang K W, Lee K S, et al. Mechanical properties and structural stability of perovskite-type, oxygen-permeable, dense membranes[J]. Desalination, 2006, 193(1): 236-243.
[7] 牛少鹏, 周克崧, 邓畅光, 等. 超音速等离子喷涂制备非对称型La0.6Sr0.4Co0.2Fe0.8O3-δ透氧膜的性能[J]. 材料热处理学报, 2019, 40(09): 135-141.
[8] 戴红亮, 邓畅光, 牛少鹏,等. 超音速等离子喷涂La0.6Sr0.4Co0.2Fe0.8O3-δ透氧膜的制备与致密性研究[J]. 材料研究与应用, 2017, 11(2): 72-78.
[9] Jiang H Q, Wang H H, Liang F Y, et al. Improved water dissociation and nitrous oxide decomposition by in situ oxygen removal in perovskite catalytic membrane reactor[J]. Catalysis Today, 2010, 156(3):187-190.
[10] 杨微, 李芳, 孙爱玲, 等. SDC-SSF支撑型透氧膜的制备及透氧性能研究[J]. 膜科学与技术, 2019(1):41-47.
[11] Huang K, Tichy R S, Goodenough J B. Superior perovskite oxide‐Ion conductor: strontium‐ and magnesium‐doped LaGaO3: II, AC impedance spectroscopy[J]. Journal of the American Ceramic Society, 2010, 81(10): 2565-2575.
[12] Fujioka J, Miyasaka S, Tokura Y. Doping variation of orbitally-induced anisotropy in electronic structure of the perovskite-type vanadium oxides[C]. Aps March Meeting, 2007.
[13] 翟永青,姚子华, 丁士文, 等. EDTA络合溶胶—凝胶法制备La0.8Sr0.2FeO3纳米粉体[J]. 稀有金属, 2002, 26(1): 69-72.
[14] Zhang G, Liu Z, Na Z, et al. A novel Nb2O5-doped SrCo0.8Fe0.2O3-δ oxide with high permeability and stability for oxygen separation[J]. Journal of Membrane Science, 2012, 405: 300-309.
[15] Babakhani E G , Towfighi J , Shirazi L , et al. Structure stability and oxygen permeability of perovskite-type oxides of Ba0.5Sr0.5Co0.8Fe0.1R0.1O3-δ (R=Al, Mn, Fe, Ce, Cr, Ni, Co)[J]. Journal of Materials Science & Technology, 2012, 28(2):177-183.
[16] Park J H, Sang D P. Oxygen permeability and structural stability of La0.6Sr0.4Co0.2Fe0.8O3?δ membrane[J]. Korean Journal of Chemical Engineering, 2007, 24(5): 897-905.
[17] Shao Z, Xiong G, Dong H, et al. Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas[J]. Separation & Purification Technology, 2001, 25(1): 97-116..
[18] 张恒, 王婷婷, 聂毅,等. SrFe0.6Cu0.3Ti0.1O3-δ透氧膜反应器中甲烷部分氧化反应工艺及膜稳定性考察[J]. 化工学报, 2014, 65(5): 1660-1666.
[19] Peng Z, Chang X, Wu Z, et al. Effect of the packing amount of catalysts on the partial oxidation of methane reaction in a dense oxygen-permeable membrane reactor[J]. Industrial & Engineering Chemistry Research, 2005, 44(6): 1954-1959.
[20] 廖庆. 高透量、高稳定性透氧膜材料及其透氧性能研究[D]. 广州: 华南理工大学, 2015.
[21] Li Q, Zhu X, Yang W. Single-step fabrication of asymmetric dual-phase composite membranes for oxygen separation[J]. Journal of Membrane Science, 2008, 325(1):11-15.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号