Improving and tuning the pore structure and performance of thermally cross-linked PAN membrane via the silica aerogel |
Authors: WANG Kaifang, LI Lin, ZHANG Yongyue, PENG Shaomeng, WANG Chunlei, LIANG Changhai, WANG Tonghua |
Units: 1.School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin 124221, China; 2. State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 |
KeyWords: polyacrylonitrile , silica aerogel , pore structure, permeability |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2020,40(3):81-87 |
Abstract: |
Silica sol was prepared by sol-gel method using ethyl orthosilicate (TEOS) as the precursor and introduced into the pores of polyacrylonitrile (PAN) ultrafiltration membranes. Then, the cross-linked PAN (TPS) hybrid membrane with a sponge-like pore structure was prepared through thermally cross-linking reaction. The effects of the concentration of TEOS on the pore structure and permeability of the TPS hybrid membrane was investigated. The results show that the silica aerogel which was introduced into the pores of TPS hybrid membrane restricts the collapse of pore structure during the thermal crosslinking process. With the increase of TEOS concentration, the average effective pore size and water flux of the TPS hybrid membrane both increase. The TPS hybrid membranes have the higher rejection rate for BSA above 98%. Additionally, the hybrid membrane exhibits excellent thermal stability and good solvent resistance. |
Funds: |
国家重点研发计划项目(2017YFB0603403);国家自然科学基金(21436009、21676044、21576035, 21878033);中央高校基本科研业务费(DUT19ZD211、 DUT 2018TB02)资助 |
AuthorIntro: |
第一作者简介:王开放(1993-),男,河南开封人,硕士生,从事聚合物膜研究。* 通讯作者,E-mail:wangth@dlut.edu.cn |
Reference: |
[1] Minelli M, Baschetti M G, et al. Study of gas permeabilities through polystyrene-block-poly(ethylene oxide)copolymers [J]. Journal of Membrane Science, 2013, 432:83-89. [2] Yang T, Shi G M, et al. Symmetric and asymmetric zeolitic imidazolate frameworks(ZIFs)/polybenzimidazolate(PBI)na- nocomposite membranes for hydrogen purification at high temperatures[J].Advanced Energy Materials, 2012, 2:1358 -1367. [3] Li S, Wang Z, et al. High-performance membranes with multi-permselectivity for CO2 separation[J]. Advanced Materials, 2012, 24:3196-3200. [4] Solomon M F J, Bhole Y, et al. High flux hydrophobic membranes for organic solvent nanofiltration (OSN)interfac- ial polymerization, surface modification and solvent active- ation[J]. Journal of Membrane Science, 2013, 434:193-203. [5] Karan S, Samitsu S, et al. Diamond-like carbon nanosheets Ultrafast viscous permeation of organic solvents through[J]. Science, 2012, 335:444-447. [6] Darvishmanesh S, Tasselli F, et al. Preparation of solvent stable polyphenylsulfone hollow fiber nanofiltration mem- branes[J]. Journal of Membrane Science, 2011, 384:89-96. [7] Yao Y, Lin z, et al. Synthesis of nonfluorinated amphiphi- lic road-coil block copolymer and its application to proton exchange membranes[J]. Advanced Energy Materials, 2011, 1:1133-1140. [8] Kim T A, Jo W H, et al. Superacidic electrospun fiber-nafion hybrid proton exchange membrane[J]. Chemistry of Materials, 2010, 22:3646-3652. [9] Lee S Y, Ogawa A, et al. Nonhumidified intermediate temperature fuel cells using protic ionic liquids[J]. Journal of the American Chemical Society, 2010, 132:9764-9773. [10] Gao J, Wang X X, et al. Preparation of heat-treated PAN/SiO2 hybrid hollow fiber membrane contactor for acetylene absorption[J]. Separation and Purification Tech- nology, 2016, 159:116-123. [10] 梁明兴, 李琳, 王同华, 等. 不同分子量聚丙烯腈共混膜的制备与表征[J]. 膜科学与技术, 2017, 37(4): 20-26. [11] Peng Y B, Guo F, et al. A novel polyacrylonitrile membrane with a high flux for emulsified oil/water separation [J]. Separation and Purification Technology, 2017, 184:72-78. [12] Beril Melbiah J S, Nithya D, et al. Surface modification of polyacrylonitrile ultrafiltration membranes using amphiphilic pluronic F127/CaCO3 nanoparticles for oil/water emulsion separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516:147-160. [13] Tsai H A, Wang T Y, et al. The preparation of polyamide/polyacrylonitrile thin film composite hollow fiber membranes for dehydration of ethanol mixtures[J]. Separ- ation and Purification Technology, 2017, 187:221-232. [14] Liang B, Zhan W, et al. High performance grapheme oxide/polyacrylonitrile composite pervaporation membranes for desalination applications[J]. Journal of Materials Chemistry A, 2015, 3:5140-5147. [15] 丁玲华, 李琳, 王同华, 等. 预氧化对聚丙烯腈膜结构及性能的影响[J]. 膜科学与技术, 2015, 35(2): 1-6. [16] Jin X, Li L, et al. Effects of thermal cross-linking on the structure and property of asymmetric membrane prepared from the polyacrylonitrile[J]. Polymers. 2018, 10:1-16. [17] Wang T, Zhao C W, Li P, et al. Effect of non-solvent additives on the morphology and separation performance of poly(m-phenylene isophthalamide)(PMIA)hollow fiber nanofiltration membrane [J]. Desalination, 2015, 365:293-307. [18] Li W B, Yang Z H, et al. Thermally stable and solvent resistant self-crosslinked TiO2/PAN hybrid hollow fiber membrane fabricated by mutual supporting method[J]. Journal of Membrane Science, 2014, 467:253-261. [19] Hu Y T, Wei C, et al. Separation and antifouling properties of hydrolyzed PAN hybrid membranes prepared via in-situ sol-gel SiO2 nanoparticles growth[J]. Journal of Membrane Science, 2018, 545:250-258. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号