Position:Home >> Abstract

Effect of KH570 modified barium titanate on the properties of SPEEK proton exchange membrane
Authors: DONG Cuicui, WANG Yijie, SUN Jin, ZHOU Qiong
Units: 1Sinopec Dalian Research Institute of Petroleum and Petrochemicals, 2China University of Petroleum-Beijing
KeyWords: proton conductivity, SPEEK, silane coupling agent, barium titanate
ClassificationCode:TM911.48
year,volume(issue):pagination: 2020,40(4):55-61

Abstract:
Barium titanate (BT) was modified by KH570 to improve its dispersion in polymers. The sulfonated poly(ether ether ketone) (SPEEK)/KH570 modified barium titanate (KH570-BT) composite proton exchange membrane was prepared by solution casting method. The dispersion of BT and KH570-BT in SPEEK was observed by TEM. The influences of KH570-BT on the properties of composite membrane was studied systematically. The results show that the incorporation of KH570-BT can improve the proton conductivity, methanol permeability, thermal stability and selectivity of SPEEK. The proton conductivity of the SPEEK/KH570-BT-1.0 composite membrane reached 63.7 ms/cm, higher than SPEEK/BT-1.0 (σ = 57.7 ms/cm) and SPEEK (σ = 58.6 ms/cm) , the selectivity of SPEEK/KH570-BT-1.0 was 20.9×104 S s/cm3, which was 21.5% and 18.1% higher than SPEEK/BT-1.0 and SPEEK respectively.

Funds:
国家重点研发计划(2016YFC0303700);国家科技重大专项(201505017-002)

AuthorIntro:
第一作者简介:董翠翠(1985-),女,辽宁省人,博士,主要从事质子交换膜燃料电池的研究,E-mail:dongcuicui.fshy@sinopec.com 通讯作者,E-mail:zhouqiong_cn@163.com

Reference:
[1] Jimmy L, Koich Y, Takeo Y. Correlating electronic structure and chemical durability of sulfonated poly(arylene ether sulfone)s[J]. Journal Of Power Sources, 2015, 279:48-54.
[2] Nayibe GM, Dominic G, Andres GG. Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells[J]. Journal Of Power Sources, 2015, 300:229-237.
[3] Nguyen, Dang HS, Kim D. Proton exchange membranes based on sulfonated poly(arylene ether ketone) containing triazole group for enhanced proton conductivity[J]. J Membr Sci, 2015, 496:13-20.
[4] Zhang B, Ni JP, Xiang XZ. Synthesis and properties of reprocessable sulfonated polyimides cross-linked via acid stimulation for use as proton exchange membranes[J]. Journal Of Power Sources, 2017, 227:110-117.
[5] Yin YH, Wang HY, Cao L. Sulfonated poly(ether ether ketone)-based hybrid membranes containing graphene oxide with acid-base pairs for direct methanol fuel cells[J]. Electrochimica Acta, 2016, 203:178-188.
[6] Salarizadeh P, Javanbakht M. Influence of amine-functionalized iron titanate as filler for improving conductivity and electrochemical properties of SPEEK nanocomposite membranes[J]. Chemical Engineering Journal, 2016, 299:320-331.
[7] Ko T, Kim K, Kim SK. Organic/inorganic composite membranes comprising of sulfonated Poly(arylene ether sulfone) and core-shell silica particles having acidic and basic polymer shells[J]. Polymer, 2015, 70:70-81.
[8] 王维, 张可, 房冉冉. KH570原位改性纳米SiO2球状颗粒的制备及疏水效果评价[J]. 中国粉体技术, 2019, 25(3):42-47.
[9] Enhanced proton conduction of chitosan membrane enabled by halloysite nanotubes bearing sulfonate polyelectrolyte brushes[J]. J Memb Sci, 2014, 454:220-232.
[10] Yin YH, Xu T, H GW. Fabrication of sulfonated poly(ether ether ketone)-based hybrid proton-conducting membranes containing carboxyl or amino acid-functionalized titania by in situ solegel process[J]. Journal Of Power Sources, 2015, 276:271-278.
[11] Tamura T, Kawakami H. Aligned electrospun nanofiber composite membranes for fuel cell electrolytes[J]. Nano Lett,2010, 10:1324-1328.
[12] Jang W, Choi S, Lee S. Characterizations and stability of polyimide-phosphotungstic acid composite electrolyte membranes for fuel cell[J]. Polymer Degradation and Stability, 2007, 92:1289-1296.
[13] Jun Y, Zarrin H, Fowler M. Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells.International Journal of Hydrogen Energy, 2011, 36:6073-6081.
[14] Mossayebi Z, Saririchi T, Rowshanzamir S. Investigation and optimization of physicochemical properties of sulfated zirconia/sulfonated poly (ether ether ketone) nanocomposite membranes for medium temperature proton exchange membrane fuel cells[J]. Int J Hydrogen Energy, 2016, 41:12293-306.
[15] Zhang HQ, He YK, Zhang JK. Constructing dual-interfacial proton-conducting pathways in nanofibrous composite membrane for efficient proton transfer[J]. J Memb Sci, 2016, 505:108-118.
[16] Zheng J, He Q, Liu C. Nafion-microporous organic polymer networks composite membranes[J]. J Memb Sci, 2015, 476:571-579.
[17] Gaur, SS, Dhar P, Sonowa A. Thermo-mechanically stable sustainable polymer based solid electrolyte membranes for direct methanol fuel cell applications[J]. J Memb Sci, 2017, 526:348-354.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号