Study on Hydrophilic Modification of Polyvinylidene Fluoride-Trifluorochloroethylene Membrane |
Authors: SUN Yuke, Lyu Xiaolong, KONG Xiao, ZHENG Shuyun, ZHANG Shaozhe, MA Ronghua |
Units: State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China |
KeyWords: Polyvinylidene fluoride-trifluorochloroethylene;Membrane fouling; graft reaction; hydrophilic modification |
ClassificationCode: |
year,volume(issue):pagination: 2020,40(5):47-53 |
Abstract: |
In this paper, the unique C-Cl bond of Poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) (PVDF-CTFE) is used as the reactive site, and the polyhydroxyl hydrophilic substance meglumine, PVDF is added in the process of preparing the casting solution. -CTFE undergoes a grafting reaction with meglumine while dissolving, and a durable hydrophilic polyvinylidene fluoride-trifluorochloroethylene membrane is prepared an one-step substitution reaction which is based on in situ. In this paper, we focused on comparing the modified PVDF-CTFE membrane prepared by one-step bulk modification with surface graft modification and surface cross-linking modified PVDF-CTFE membrane. We examined the hydrophilicity, mechanical properties, pore size change, and antifouling performance of PVDF-CTFE that modified by these three methods. The results show that the one-step method has a hydrophilic modification effect on the copolymer membrane (water contact angle decreased by 66.2 °) and a significant improvement in the antifouling performance of the membrane, it is higher than the other two methods, and significantly improves the pure water flux of the membrane (with a maximum increase of 185%) while maintaining the membrane's pore size and mechanical properties. |
Funds: |
国家自然科学基金(21776216),国家重点研究发展计划(2017YFC0403902),山东省自然科学基金(ZR2019LFG007),天津市高等学校创新研究计划(TD13-5044) |
AuthorIntro: |
孙煜珂(1995-),女,浙江桐乡人,硕士研究生,研究方向为膜制备,E-mail:18367386528@163.com |
Reference: |
[1] Souzy R, Ameduri B. Functional fluoropolymers for fuel cell membranes[J]. Prog. Polym. Sci, 2005, 30:644-687. [2] Abidin A Z, Puspasari T, NUGROHO W A. Polymers for Enhanced Oil Recovery Technology[J]. Procedia. Chem, 2012, 4:11-16. [3] Rabuni M F, Sulaiman N M N, Aroua M K, et al. Effects of Alkaline Environments at Mild Conditions on the Stability of PVDF Membrane: An Experimental Study[J]. Ind. Eng. Chem. Res, 2013, 52 (45):15874-15882. [4] Ranjan V, Yu L, Nardelli M B, et al. Phase Equilibria in High Energy Density PVDF-Based Polymers[J]. Phys. Rev. Lett, 2007, 99 (4):47801. [5] Zheng L B, Wang J, Li J, et al. Preparation, evaluation and modification of PVDF-CTFE hydrophobic membrane for MD desalination application[J]. Desalination,2007, 402:162-172. [6] Zheng L B, Wu Z J, Wei Y S, et al. Preparation of PVDF-CTFE hydrophobic membranes for MD application: Effect of LiCl-based mixed additive[J]. J. Membr. Sci, 2016, 506:71-85. [7] Sousa R E, Kundu M, Gören A, et al. Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) lithium-ion battery separator membranes prepared by phase inversion[J]. RSC Adv,2015, 5:90428-90436. [8] Karkhanechi H, Vaselbehagh M, Jeon S, et al. D.M. Wang, H. Matsuyamaa, Preparation and characterization of polyvinylidenedifluoride-co-chlorotrifluoroethylene hollow fiber membranes with high alkaline resistance[J]. Polym, 2018, 145:310-323. [9] Guo W S, Ngo HH, Li J X. A mini-review on membrane fouling[J]. Bioresour. Technol, 2012, 122:27-34. [10] Asatekina A, Kang S, Elimelechb M, et al. Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives[J]. J. Membr. Sci, 2007, 298 (2007) 136-146. [11] Drews A, Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures[J]. J. Membr. Sci, 2010, 363:1-28. [12] Yang C, Han N, Han C Y, et al. Design of a Janus F-TiO2@PPS porous membrane with asymmetric wettability for switchable oil/water separation[J]. ACS Appl. Mater. Interfaces,2019, 11:2522408-22418. [13] Han N, Yang C, Zhang Z X, et al. Electrostatic assembly of a titanium dioxide@hydrophilic poly(phenylene sulfide) porous membrane with enhanced wetting selectivity for separation of strongly corrosive oil-water emulsions[J]. ACS Appl. Mater. Interfaces, 2019, 11:35479-35487. [14] Zhang M F, Russell T P. Graft Copolymers from Poly(vinylidene fluoride-\r, c\r, o\r,-chlorotrifluoroethylene) via Atom Transfer Radical Polymerization[J]. Macromol, 2006, 39:3531-3539. [15] Koh J H, Kim Y M, Park J T, et al. Nanofiltration membranes based on poly(vinylidene-fluoride-co-chlorotrifluoroethylene)-graft-poly(styrene sulfonic acid) [J]. Polym. Adv. Technol, 2010, 19:1643-1648. [16] Liu F, Abed M R M, LI K. Hydrophilic modification of P(VDF-co-CTFE) porous membranes[J]. Chem. Eng. Sci, 2010, 66:27-35. [17] Kato K, Uchida E, Kang e T, et al. Polymer surface with graft chains[J]. Progress in Polymer Science, 2003, 28(2): 209-259. [18] 张庆磊,吕晓龙,刘娟娟,聚偏氟乙烯血液透析膜的制备与评价[C]// 天津市生物医学工程学会第三十四届学术年会. 中国会议,2014. [19] 蒋文斌, 纪利俊, 陈葵, 等. 聚乙烯醇与戊二醛的交联反应动力学[J]. 华东理工大学学报(自然科学版), 2016, 42(5): 625-629. [20] 庄银凤, 朱仲祺, 王艳焰, 等. 对聚乙烯醇-戊二醛凝胶体系的初步研究[J]. 油田化学, 1996, 13(3): 264-265. [21] 邱海龙, 吕晓龙, 武春瑞, 等. 一种筋线增强型聚偏氟乙烯中空纤维膜纺丝条件对膜结构与性能的影响研究[J]. 膜科学与技术, 2019, 4:21-28. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号