Preparation and desalination performance of PVDF / PI cation exchange membrane |
Authors: Qianjie Wang, Honghai Li1,Baowei Su |
Units: 1. School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; 2. College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China |
KeyWords: Cation exchange membrane; Surface modification; Electrodialysis; Immersion precipitation phase transformation; Crosslinking |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2021,41(1):1-9 |
Abstract: |
Polyvinylidene fluoride (PVDF)/Polyimide (PI) blend membrane was prepared by the immersion precipitation phase transformation method. Then the PVDF/PI membrane was modified using 4,4'-diaminostilbene-2,2'-disulfonic acid and triethylamine (DASD-TEA) aqueous solution to prepare PVDF/PI cation exchange membrane. The effects of soaking time, temperature, concentration of DASD-TEA solution and PI concentration on the desalination rate of the PVDF/PI cation exchange membrane were explored. The optimal composition of the casting solution is 19.0 wt% PVDF, 1.0 wt% PI and 80.0 wt% N, N-dimethylformamide (DMF). The optimal conditions of the DASD-TEA modification are 0.03 wt% DASD in the DASD-TEA aqueous solution, and soaking at 50.0 ℃ for 10 min. The ion exchange capacity (IEC) of the PVDF/PI cation exchange membrane is 0.32 mmol·g-1, the water content is 38.6%, the pure water permeability is 50 L·m-2·h-1·bar-1, the contact angle is 81.9 °, and the transmembrane resistance is 2.96 Ω·cm2. The desalination experiment was carried out in the electrodialysis device with three membrane pairs under 4 V voltage for 120 min, with 2000 mg/L NaCl solution as feed at a flow rate of 40 L·h-1. The desalination rate of the PVDF/PI cation exchange membrane is 1.33 times that of the commercial cation exchange membrane.。 |
Funds: |
AuthorIntro: |
王乾杰(1994-),男,山东聊城人,硕士研究生,研究方向:传质与分离工程,E-mail: wqjqust@163.com。 |
Reference: |
[1] STRATHMANN H. Electrodialysis, a mature technology with a multitude of new applications [J]. Desalination, 2010, 264(3): 268-288. [2] WANG Q, GAO X, ZHANG Y, et al. Hybrid RED/ED system: Simultaneous osmotic energy recovery and desalination of high-salinity wastewater [J]. Desalination, 2017, 405: 59-67. [3] DAHMARDEH H, AKHLAGHI AMIRI H A, NOWEE S M. Evaluation of mechanical vapor recompression crystallization process for treatment of high salinity wastewater [J]. Chemical Engineering and Processing - Process Intensification, 2019, 145: 107682. [4] LEFEBVRE O, MOLETTA R. Treatment of organic pollution in industrial saline wastewater: A literature review [J]. Water Research, 2006, 40(20): 3671-3682. [5] TEDESCO M, SCALICI C, VACCARI D, et al. Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines [J]. Journal of Membrane Science, 2016, 500: 33-45. [6] 何汉锋. 基于蒸发热结晶技术的高盐废水问题解决处理技术研究 [J]. 科技视界, 2018(19): 213-214. [7] GAO H, ZHANG B, TONG X, et al. Monovalent-anion selective and antifouling polyelectrolytes multilayer anion exchange membrane for reverse electrodialysis [J]. Journal of Membrane Science, 2018, 567:68-75. [8] HONG J G, ZHANG B, GLABMAN S, et al. Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review [J]. Journal of Membrane Science, 2015, 486: 71-88. [9] NA Z, YANG L, RU L, et al. Polymer inclusion membrane (PIM) containing ionic liquid as a proton blocker to improve waste acid recovery efficiency in electrodialysis process [J]. Journal of Membrane Science, 2019, 581: 18-21 [10] RAN J, WU L, HE Y, et al. Ion exchange membranes: New developments and applications [J]. Journal of Membrane Science, 2017, 522: 267-91. [11] 李爱玉, 王三反, 宋小三,等. 离子交换膜的制备及发展趋势研究 [J]. 环境科学与管理, 2017, 42(05): 102-105. [12] LUO T, ABDU S, WESSLING M. Selectivity of ion exchange membranes: A review [J]. Journal of Membrane Science, 2018, 555: 429-454. [13] ZHAO J, SUN L, CHEN Q, et al. Modification of cation exchange membranes with conductive polyaniline for electrodialysis applications [J]. Journal of Membrane Science, 2019, 582: 211-223. [14] YIFRU WAKTOLE B, QIAOLIN L, BINGHUA Y, et al. Anion exchange membrane organic fouling and mitigation in salt valorization process from high salinity textile wastewater by bipolar membrane electrodialysis [J]. Desalination, 2019, 465: 94-103 [15] YUANWEI L, SHANSHAN Y, YU C, et al. Preparation of water-based anion-exchange membrane from PVA for anti-fouling in the electrodialysis process [J]. Journal of Membrane Science, 2019, 570-571: 130-138 [16] CAN L, SHUXUAN L, LI L, et al. High Solvent-resistant and Integrally Crosslinked Polyimide-based Composite Membranes for Organic Solvent Nanofiltration [J]. Journal of Membrane Science, 2018, 564: 10-21 [17] CHENJIE W, FENGYING D, LIGANG L, et al. Simplified and robust adhesive-free superhydrophobic SiO2-decorated PVDF membranes for efficient oil/water separation [J]. Journal of Membrane Science, 2018, 555: 220-228 [18] LI C, LI S, TIAN L, et al. Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN) [J]. Journal of Membrane Science, 2019, 572: 520-531. [19] LI S, LI C, SONG X, et al. Graphene Quantum Dots-Doped Thin Film Nanocomposite Polyimide Membranes with Enhanced Solvent Resistance for Solvent-Resistant Nanofiltration [J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6527-6540. [20] JUNBIN L, XINYAN Y, NENGXIU P, et al. Amphoteric ion-exchange membranes with superior mono-/bi-valent anion separation performance for electrodialysis applications [J]. Journal of Membrane Science, 2019, 577: 153-164 [21] LIU H, RUAN H, ZHAO Y, et al. A facile avenue to modify polyelectrolyte multilayers on anion exchange membranes to enhance monovalent selectivity and durability simultaneously [J]. Journal of Membrane Science, 2017, 543: 310-8. [22] XI C, YI H, YI F, et al. Nature-inspired polyphenol chemistry to fabricate halloysite nanotubes decorated PVDF membrane for the removal of wastewater [J]. Separation and Purification Technology, 2019, 212: 326-336 [23] 李树轩, 黄良伟, 苏保卫, 等. 交联聚酰亚胺耐溶剂超滤膜的制备及性能研究 [J]. 膜科学与技术, 2018, 38(05): 47-54. [24] 武利顺, 孙俊芬, 王庆瑞. 相转化膜孔形成机理的研究进展 [J]. 膜科学与技术, 2007, 03-: 86-90. [25] 李媛, 王立国. 电渗析技术的原理及应用 [J]. 城镇供水, 2015, 05 : 16-22. [26] 严昌虹. 由水溶性聚酰胺酸制备聚酰亚胺 [J]. 绝缘材料通讯, 1981, 01 : 34-42. [27] HAO R, JIAO X, ZHANG X, et al. Fe3O4/graphene modified waterborne polyimide sizing agent for high modulus carbon fiber [J]. Applied Surface Science, 2019, 485: 304-313. [28] LIU H, JIANG Y, DING J, et al. Surface layer modification of AEMs by infiltration and photo-cross-linking to induce monovalent selectivity [J]. AIChE Journal, 2018, 64(3): 993-1000. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号