Position:Home >> Abstract

Fabrication and characterizations of a novel kind of nanofiltration membranes with antibacterial characteristic
Authors: WANG Xi, JIANG Zhibin, HONG XinJun, HE YuanTao, CHEN Shunquan, MIAO Jing
Units: 1. Guangdong Key Laboratory of Membrane Materials and Membrane Separation, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, China; 2. Sinochem Ningbo River Membrane Technology Co. Ltd., Ningbo 315700, China; 3.School of Chemistry, South China Normal University, Guangzhou 510006, China
KeyWords: carboxymethyl chitosan, graphene oxide, polyamides, Staphylococcus aureus, antimicrobial
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2021,41(1):64-72

Abstract:
The polyamide composite nanofiltration membranes were developed using N, O-carboxymethyl chitosan (NOCC) and trimethyl chloride (TMC) as the materials of the oil phase and aqueous phase, respectively. The resultant NF membranes showed relatively low permeate fluxes, and it was easy for the bacteria to be attached to the membrane surface. In this work, a negatively charged polyamide-graphene oxide (GO) composite NF membranes were fabricated through the addition of GO into the NOCC aqueous solution, i.e. the aqueous phase. The resultant GO-PA/PSF hybrid composite NF membranes showed higher rejections, better antimicrobial and antifouling capabilities. The morphologies, physical and chemical characteristics of the resultant composite NF membranes were characterized with scanning electronic microscopy (SEM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), atomic force microscopy (AFM), contact angle, and Zeta potential. The rejection performances and the antimicrobial and antifouling capabilities to Staphylococcus aureus were investigated symmetrically. It suggested that the addition of a certain amount of GO in the aqueous phase could effectively improve the rejection performances, antimicrobial and antifouling capabilities.

Funds:
广东省产学研合作项目(2016B090918048)、质量评价导向的特种膜中药绿色制造技术及其专属装备集成研究(2019YFC1711300),中国科学院科技服务网络计划(STS计划)区域重点项目(KFJ-STS-QYZX-043)

AuthorIntro:
王希(1987.7-),女,黑龙江哈尔滨,工程师,硕士研究生,研究方向:膜材料改性,E-mail:xi.wang@giat.ac.cn;江志彬(1992.7-),男,广东梅州,博士研究生,研究方向:纳滤膜分离材料、锂电池隔膜材料,E-mail:2018010147@m.scnu.edu.cn;

Reference:
[1] Liu T Y, Bian L X, Yuan H G, et al. Fabrication of a high-flux thin film composite hollow fiber nanofiltration membrane for wastewater treatment[J]. J Membrane Sci, 2015, 478:25-36.
[2] Zhu J, Guo N, Zhang Y, et al. Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nanotubes grafted with poly (sodium 4-styrenesulfonate) via surface-initiated ATRP[J]. J Membrane Sci, 2014, 465:91-99.
[3] Zhang Z, Wei W. Positively charged hollow-fiber composite nanofiltration membrane prepared by quaternization crosslinking[J]. J Appl Polym Sci, 2013, 129(5) 2806-2812.
[4] 姜雨薇, 冉艳红. 纳滤膜技术在废水处理中的应用与发展趋势[J]. 现代化工. 2011, 31(2):25-28.
[5] 毕 飞, 陈欢林, 高从堦. 纳滤膜去除饮用水中微量有机物的研究进展[J]. 现代化工. 2011, 31(7):21-28.
[6] Wang J, Gao X, Wang J, et al. O-(Carboxymethyl)-chitosan nanofiltration membrane surface functionalized with graphene oxide nanosheets for enhanced desalting properties[J]. ACS Appl Mater Interfaces, 2015, 7(7):4381-4389.
[7] 李红宾, 石文英, 朱红英, 等. 耐污染性复合纳滤膜制备技术研究进展[J]. 水处理技术. 2016, 042(006):1-7.
[8] 刘 兴, 邓慧宇, 段龙繁, 等. 抗污染高分子纳滤膜研究进展[J]. 膜科学与技术. 2018, 38(05):118-126.
[9] Wu M B, Lv Y, Yang H C, et al. Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances[J]. J Membrane Sci, 2016, 515: 238-244.
[10] Akbari A, Homayoonfal M. Sulfonation and mixing with TiO2 nanoparticles as two simultaneous solutions for reducing fouling of polysulfone loose nanofiltration membrane[J]. Korean J Chem Eng, 2016, 33(8):2439-2452.
[11] Lee K P, Zheng J, Bargeman G, et al. pH stable thin film composite polyamine nanofiltration membranes by interfacial polymerisation[J]. J Membrane Sci, 2015, 478:75-84.
[12] Li M, Lv Z, Zheng J, et al. Positively charged nanofiltration membrane with dendritic surface for toxic element removal[J]. ACS Sustain Chem Eng, 2017, 5(1): 784-792.
[13] 孙海静, 高学理, 王 剑, 等. 抗污染抑菌性聚酰胺纳滤膜的制备及性能表征[J]. 中国海洋大学学报:自然科学版 2017, (5).
[14] Kirschner C M, Brennan A B. Bio-Inspired Antifouling Strategies[J]. Annu Rev Mater Sci, 2012, 42(1):211-229.
[15] 江志彬, 何远涛, 陈 琪, 等. 功能性有机/无机杂化纳滤膜的研究进展[J]. 膜科学与技术. 2018, 038(2):125-131.
[16] Lee S Y, Kim H J, Patel R, et al. Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties[J]. Polym Adv Technol, 2010, 18(7):562-568.
[17] Maheswari, P, Prasannadevi, et al. Preparation and performance of silver nanoparticle incorporated polyetherethersulfone nanofiltration membranes[J]. High Perform Polym, 2013, 25(5): 174-187.
[18] Liu X, Qi S, Li Y, et al. Synthesis and characterization of novel antibacterial silver nanocomposite nanofiltration and forward osmosis membranes based on layer-by-layer assembly[J]. Environ Sci Technol, 2013, 47(9):3081-3092.
[19] Ji J, Zhang W. Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds[J]. J Biomed Mater Res A, 2008, 88A(2):448-453.
[20] Sin M C, Sun Y M, Chang Y. Zwitterionic-Based Stainless Steel with Well-Defined Polysulfobetaine Brushes for General Bioadhesive Control[J]. ACS Appl Mater Interfaces, 2014, 6(2):861-873.
[21] Zhang X, Zhang Q, Yan T, et al. Quantitatively predicting bacterial adhesion using surface free energy determined with a spectrophotometric method[J]. Environ Sci Technol, 2015, 49(10):6164-6171.
[22] Graham M V, Mosier A P, Kiehl T R, et al. Development of antifouling surfaces to reduce bacterial attachment[J]. Soft Matter, 2013, 9(27):6235.
[23] Zhao W, Walker S L, Huang Q, et al. Adhesion of bacterial pathogens to soil colloidal particles: Influences of cell type, natural organic matter, and solution chemistry[J]. Water Res, 2014, 53:35-46.
[24] Hamadi F, Latrache H, Mabrrouki M, et al. Effect of pH on distribution and adhesion of Staphylococcus aureus to glass[J]. Journal of Adhes Sci Technol, 2005, 19(1):73-85.
[25] Vrushali W, Chu E, Roxana S, et al. Molecular basis of crystal morphology-dependent adhesion behavior of mefenamic acid during tableting[J]. Pharmaceut Res, 2014, 31(1):160.
[26] Hu W, Peng C, Luo W, et al. Graphene-based antibacterial paper[J]. ACS Nano 2010, 4(7):4317-4323.
[27] 邵文尧, 闫梦文, 谢全灵. 氧化石墨烯抗菌机理研究进展[J]. 化工技术与开发 2016, 45(010):32-36.
[28] Akhavan O, Ghaderi E, Esfandiar A. Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation[J]. J Phys Chem B 2011, 115(19):6279-6288.
[29] Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano 2010, 4(10):5731-5736.
[30] Tu Y, Lv M, Xiu P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets[J]. Nat Nanotechnol 2013, 8(8): 594-601.
[31] Zhang Y, Ali S F, Dervishi E, et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells[J]. Acs Nano 2010, 4(6):3181-3186.
[32] Liu X, Chen KL. Interactions of Graphene Oxide with Model Cell Membranes: Probing Nanoparticle Attachment and Lipid Bilayer Disruption[J]. Langmuir 2015, 31(44):12076-12086.
[33] Abadikhah H, Naderi Kalali E, Khodi S, et al. Multifunctional Thin-film nanofiltration membrane incorporated with reduced graphene oxide@TiO2@Ag nanocomposites for high desalination performance, dye retention, and antibacterial properties[J]. ACS Appl Mater Inter 2019, 11(26):23535-23545.
[34] Zhu J, Wang J, Uliana A A, et al. Mussel-inspired architecture of high-flux loose nanofiltration membrane functionalized with antibacterial reduced graphene oxide-copper nanocomposites[J]. ACS Appl Mater Inter 2017, 9(34):28990-29001.
[35] Fang W, Shi L, Wang R. Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability[J]. J Membrane Sci, 2014, 468:52-61.
[36] Zhao F, Ji Y, Weng X D, et al. High-flux positively charged nanocomposite nanofiltration membranes filled with poly(dopamine) modified multiwall carbon nanotubes[J]. ACS Appl Mater Interfaces, 2016, 8(10):6693.
[37] Baruah K, Hazarika S. Separation of acetic acid from dilute aqueous solution by nanofiltration membrane[J]. J Appl Polym Sci, 2014, 131(15): 40537.
[38] Misdan N, Lau W J, Ismail A F. Physicochemical characteristics of poly(piperazine-amide) TFC nanofiltration membrane prepared at various reaction times and its relation to the performance[J]. J Polym Eng, 2015, 35(1):71-78.
[39] Liu F, Ma B R, Zhou D, et al. Positively charged loose nanofiltration membrane grafted by diallyl dimethyl ammonium chloride (DADMAC) via UV for salt and dye removal[J]. React Funct Polym, 2015, 86:191-198.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号