Position:Home >> Abstract

Recent progress of tailoring microstructure and gas separation performance of carbon molecular sieve membranes
Authors: Fan Yanfang,Wang Qixiang,Cui Junwei
Units: College of Chemical Engineering and Environment,China University of Petroleum-Beijing,Beijing 102200,China;Research,Institute of Experiment and Detection,Xinjiang Oilfield Company,PetroChina,Karamay 834000,China
KeyWords: gas separation; carbon molecular sieve membrane; performance optimization; microstructure tailor;scale-up
ClassificationCode:TQ02
year,volume(issue):pagination: 2021,41(2):117-126

Abstract:
  As one new type of inorganic porous membranes, carbon molecular sieve membrane with its advantages of high permeability and selectivity holds great potential to replace the conventional gas separation membranes. Fundamental understanding of the formation mechanism of CMS membranes and clarifying the correlation between precursor performance and CMS microstructure and separation performance can achieve the goal of microstructure control and optimization of gas separation performance. This paper systematically summarizes research progress on preparation process of CMS membrane in the past ten years, various precursors based CMS developments and the current situation of design and preparation. The preparation of CMS membranes based on polyimide and Polymer of Intrinsic Microporous was specifically discussed. Research work on tailoring CMS membrane microstructure and performance optimization was also discussed with the focus on precursor cross-linking modification. The research progress of large-scale CMS membrane preparation is summarized. The feasible CMS membrane structure control methods are proposed, and future developments of large-scale CMS membranes preparation are proposed.

Funds:
国家自然科学基金(21978321,21506252)

AuthorIntro:
通讯作者:樊燕芳(1985-),女,山西原平人,副教授,硕士生导师,从事先进膜材料、膜分离技术研究。E-mail:yanfang.fan@cup.edu.cn

Reference:
 [1] Sholl D S, Lively R P. Seven chemical separations to change the world. Nature, 2016, 532: 435-437
[2] Kiyono M, Williams P J, Koros W J. Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes[J]. J Membr Sci, 2010, 359: 2-10
[3] Koros W J, Zhang C. Materials for next-generation molecularly selective synthetic membranes. Nat Mater, 2017, 16: 289-297
[4] 金万勤 徐南平. 限域传质分离膜. 化工学报, 2018, 69: 50-56
[5] 王学瑞, 张春, 张玉亭,等. 中空纤维分子筛膜制备与应用研究进展. 膜科学与技术, 2020, 40: 313-321
[6] 刘露月, 吕荥宾, 刘壮,等. 层层堆叠石墨烯膜的稳定性强化及层间距调控研究进展. 膜科学与技术, 2020, 40: 228-239
[7] 刘垚, 吕陈美, 朱玲,等. 沸石分子筛膜合成的新方法. 膜科学与技术, 2020, 40: 145-150
[8] Kim Y K, Park H B, Lee Y M. Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: effect of the molecular weight of polyvinylpyrrolidone[J]. J Membr Sci, 2005, 251: 159-167
[9] Shin J H, Yu H J, Park J, et al. Fluorine-containing polyimide/polysilsesquioxane carbon molecular sieve membranes and techno-economic evaluation thereof for C3H6/C3H8 separation[J]. J Membr Sci, 2020, 598: 117660
[10] 徐瑞松, 李琳, 侯蒙杰,等. 新型炭基膜材料前驱体聚合物的研究进展. 膜科学与技术, 2020, 40: 250-259
[11] Hamm J B S, Ambrosi A, Griebeler J G, et al. Recent advances in the development of supported carbon membranes for gas separation[J]. Int. J. Hydrog. Energy, 2017, 42: 24830-24845
[12] Koresh J E, Sofer A. Molecular sieve carbon permselective membrane. Part I. presentation of a new device for gas mixture separation. Separation Science, 1983, 18: 723-734
[13] Fu S, Wenz G B, Sanders E S, et al. Effects of pyrolysis conditions on gas separation properties of 6FDA/DETDA:DABA(3:2) derived carbon molecular sieve membranes[J]. J Membr Sci, 2016, 520: 699-711
[14] Qiu W, Zhang K, Li F S, et al. Gas separation performance of carbon molecular sieve membranes based on 6FDA-mPDA/DABA (3:2) polyimide [J]. ChemSusChem, 2014, 7: 1186-1194
[15] Salleh W N W, Ismail A F. Effects of carbonization heating rate on CO2 separation of derived carbon membranes[J]. Sep Purif Technol, 2012, 88: 174-183
[16] Kamath M G, Fu S, Itta A K, et al. 6FDA-DETDA: DABE polyimide-derived carbon molecular sieve hollow fiber membranes: Circumventing unusual aging phenomena[J]. J Membr Sci, 2018, 546: 197-205
[17] Karunaweera C, Musselman I H, Balkus K J, et al. Fabrication and characterization of aging resistant carbon molecular sieve membranes for C3 separation using high molecular weight crosslinkable polyimide, 6FDA-DABA[J]. J Membr Sci, 2019, 581: 430-438
[18] Salleh W N W, Ismail A F, Matsuura T, et al. Precursor selection and process conditions in the preparation of carbon membrane for gas separation: A Review[J]. Sep Purif Rev, 2011, 40: 261-311
[19] Suda H, Haraya K. Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide.[J]. J Phys Chem. B, 1997, 101: 3988-3994
[20] Fu S, Sanders E S, Kulkarni S S, et al. Carbon molecular sieve membrane structure–property relationships for four novel 6FDA based polyimide precursors[J]. J Membr Sci, 2015, 487: 60-73
[21] Ning X, Koros W J. Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation. Carbon, 2014, 66: 511-522
[22] Kiyono M, Williams P J, Koros W J. Effect of polymer precursors on carbon molecular sieve structure and separation performance properties. Carbon, 2010, 48: 4432-4441
[23] Williams P J. Analysis of factors influencing the performance of CMS membranes for gas separation. thesis[D]. Georgia Tech, 2006
[24] Park H B, Kim Y K, Lee J M, et al. Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes[J]. J Membr Sci, 2004, 229: 117-127
[25] Zhang C, Koros W J. Ultraselective carbon molecular sieve membranes with tailored synergistic sorption selective properties[J].J Adv Mater 2017, 29: 1701631
[26] McKeown N B, Budd P M, Msayib K J, et al. Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials [J]. Chem Eur J., 2005, 11: 2610-2620
[27] Yang Z, Guo R, Malpass-Evans R, et al. Highly conductive anion-exchange membranes from microporous tröger's base polymers[J]. Angew. Chem. Int. Ed, 2016, 55: 11499-11502
[28] Xiao Y, Zhang L, Xu L, et al. Molecular design of Tröger’s base-based polymers with intrinsic microporosity for gas separation[J]. J Membr Sci, 2017, 521: 65-72
[29] Wang Z, Ren H, Zhang S, et al. Carbon molecular sieve membranes derived from Tröger's base-based microporous polyimide for gas separation[J]. ChemSusChem, 2018, 11: 916-923
[30] Hazazi K, Ma X, Wang Y, et al. Ultra-selective carbon molecular sieve membranes for natural gas separations based on a carbon-rich intrinsically microporous polyimide precursor[J]. J Membr Sci, 2019, 585: 1-9
[31] Ma X, Swaidan R, Teng B, et al. Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor. Carbon, 2013, 62: 88-96
[32] Salinas O, Ma X, Litwiller E, et al. Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1)[J]. J Membr Sci, 2016, 504: 133-140
[33] Salinas O, Ma X, Litwiller E, et al. High-performance carbon molecular sieve membranes for ethylene/ethane separation derived from an intrinsically microporous polyimide[J]. J Membr Sci, 2016, 500: 115-123
[34] Salinas O, Ma X, Wang Y, et al. Carbon molecular sieve membrane from a microporous spirobisindane-based polyimide precursor with enhanced ethylene/ethane mixed-gas selectivity[J]. RSC Adv, 2017, 7: 3265-3272
[35] Swaidan R, Ma X, Litwiller E, et al. High pressure pure- and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity[J]. J Membr Sci, 2013, 447: 387-394
[36] Wang Q, Huang F, Cornelius C, et al. Carbon molecular sieve membranes from cross-linkable polyimides for CO2/CH4 and C2H4/C2H6 separation[J]. J Membr Sci, 2020, 118785. 
[37] Fu S, Sanders E S, Kulkarni S S, et al. Temperature dependence of gas transport and sorption in carbon molecular sieve membranes derived from four 6FDA based polyimides: Entropic selectivity evaluation. Carbon, 2015, 95: 995-1006
[38] Chu Y-H, Yancey D, Xu L, et al. Iron-containing carbon molecular sieve membranes for advanced olefin/paraffin separations[J]. J Membr Sci, 2018, 548: 609-620
[39] Liao K-S, Japip S, Lai J-Y, et al. Boron-embedded hydrolyzed PIM-1 carbon membranes for synergistic ethylene/ethane purification[J]. J Membr Sci, 2017, 534: 92-99
[40] Jiao W, Ban Y, Shi Z, et al. High performance carbon molecular sieving membranes derived from pyrolysis of metal-organic framework ZIF-108 doped polyimide matrices[J]. Chem Commun, 2016, 52: 13779-13782
[41] Zhang C, Kumar R, Koros W J. Ultra-thin skin carbon hollow fiber membranes for sustainable molecular separations[J].AlChE J, 2019, 65: e16611
[42] Bhuwania N, Labreche Y, Achoundong C S K, et al. Engineering substructure morphology of asymmetric carbon molecular sieve hollow fiber membranes. Carbon, 2014, 76: 417-434
[43] Karvan O, Johnson J R, Williams P J, et al. A pilot-scale system for carbon molecular sieve hollow fiber membrane manufacturing[J]. Chem Eng., 2013, 36: 53-61
[44] Richter H, Voss H, Kaltenborn N, et al. High-flux carbon molecular sieve membranes for gas separation[J]. Angew Chem Int Ed, 2017, 56: 7760-7763

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号