Position:Home >> Abstract

Research progress in the synthesis of SAPO-34 membrane and their application for separation of CO2/CH4
Authors: ZHANG Hongxia, LI Qiang,XU Changyou,BING Liancheng,WANG Guangjian
Units: School of Chemical Engineering and Technology,Qingdao University of Science and Technology,Qingdao 266042
KeyWords: SAPO-34 membrane; synthesis; CO2/CH4 separation; research progress
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2021,41(2):134-139

Abstract:
 SAPO-34 membrane with CHA framework structure have wide application prospects in gas separation and other fields due to their regular pore structure, moderate and adjustable surface acidity, excellent thermal and hydrothermal stability. In this review, we introduced the synthesis method, influencing factors and application of SAPO-34 membrane for CO2/CH4 separation, focused on the control and optimization strategy of parameters in the synthesis system of SAPO-34 membrane. Meanwhile, we summarized the current research status and problems to be further solved in the field of SAPO-34 membrane for CO2/CH4 separation, and pointed out the research and development direction of SAPO-34 membrane.

Funds:
山东省自然科学基金(ZR2018LB027),省部共建煤炭高效利用与绿色化工国家重点实验室开放课题(2017-K23),山东省生态化工协同创新中心人才基金(XTCXQN15)

AuthorIntro:
张红霞(1990-),女,河北邢台人,博士,在读研究生,沸石分子筛及分子筛膜合成及应用,E-mail:17685821602@163.com

Reference:
 [1] Wu T, Diaz M C, Zheng Y, et al. Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes[J], J Membr Sci, 2015, 473: 201-209.
[2] Baker R W. Future directions of membrane gas-separation technology[J], Membr Technol, 2001, 138: 5-10.
[3] Funke H H , Chen M Z, Prakash A N, et al. Separating molecules by size in SAPO-34 membranes[J], J Membr Sci, 2014, 456: 185–191.
[4] Poshusta J C, Noble R D, Falconer J L. Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes[J], J Membr Sci, 1999, 160: 115-125.
[5] Nicolas C H, Sublet J, Schuurman Y, et al. Role of adsorption and diffusion pathways on the CO2/N2 separation performance of nanocomposite (B)-MFI-alumina membranes[J], Chem Eng Sci, 2011, 66: 6057-6068.
[6] Lindmark J, Hedlund J. Modification of MFI membranes with amine groups for enhanced CO2 selectivity[J], J Mater Chem, 2010, 20: 2219-2225.
[7] Tomita T, Nakayama K, Sakai H. Gas separation characteristics of DDR type zeolite membrane[J], Microporous Mesoporous Mater, 2004, 68: 71-75.
[8] Mirfendereski S M, Mazaheri T, Sadrzadeh M, et al. CO2 and CH4 permeation through T-type zeolite membranes: Effect of synthesis parameters and feed pressure[J], Sep Purif Technol, 2008, 61: 317-323.
[9] Cui Y, Kita H, Okamoto K. Preparation and gas separation performance of zeolite T membrane[J], J Mater Chem, 2004,14: 924-932.
[10] White J C, Dutta P K, Shqau K, et al. Synthesis of ultrathin zeolite Y membranes and their application for separation of carbon dioxide and nitrogen gases[J], Langmuir, 2010, 26: 10287-10293.
[11] Kusakabe K, Kuroda T, Murata A, et al. Formation of a Y-type zeolite membrane on a porous α-alumina tube for gas separation[J], Ind Eng Chem Res, 1997, 36: 649-655.
[12] Carreon M L, Li S, Carreon M A. AlPO-18 membranes for CO2/CH4 separation[J], Chem Commun, 2012,48: 2310-2312.
[13] Zhou R, Ping E W, Funke H H, et al. Improving SAPO-34 membrane synthesis[J], J Membr Sci, 2013, 444: 384-393.
[14] Li S, Falconer J L, Noble R D. SAPO-34 membranes for CO2/CH4 separation[J], J Membr Sci, 2004, 241: 121-135.
[15] Li S, Falconer J L, Noble R D. SAPO-34 membranes for CO2/CH4 separations: Effect of Si/Al ratio[J], Microporous Mesoporous Mater, 2008, 110: 310-317.
[16] Carreon M A, Li S, Falconer J L, et al. SAPO-34 seeds and membranes prepared using multiple structure directing agents[J], Adv Mater, 2008, 20: 729-732.
[17] Bai L, Chang N, Nan, Li M, et al. Ultrafast synthesis of thin SAPO-34 zeolite membrane by oil-bath heating[J], Microporous Mesoporous Mater, 2017, 241: 392-399.
[18] Zong Z, Carreon M A. Thin SAPO-34 membranes synthesized in stainless steel autoclaves for N2/CH4 separation[J], J Membr Sci,  2017, 524: 117-123.
[19] Alam S F, Kim M.Z, Kim Y J, et al. A new seeding method, dry rolling applied to synthesize SAPO-34 zeolite membrane for nitrogen/methane separation[J], J Membr Sci, 2020, 602: 117825.
[20] Chew T L, Ahmad A L, Bhatia S. Rapid synthesis of thin SAPO-34 membranes using microwave heating, J Porous Mat, 2011, 18: 355–360.
[21] Liu X, Du S, Zhang B. The seeded growth of dense and thin SAPO-34 membranes on porous α-Al?O? substrates under microwave irradiation, Mater Lett, 2013, 91: 195-197.
[22] Bing L, Liu X, Zhang B. Synthesis of thin CrAPSO-34 membranes by microwave-assisted secondary growth[J], J Mater Sci, 2016, 51: 1476-1483.
[23] Bing L, Wang G, Wang F, et al. Preparation of a preferentially oriented SAPO-34 membrane by secondary growth under microwave irradiation[J], RSC Adv, 2016, 6: 56170-56173.
[24] Akhtar F, Ojuva A, Wirawan S K, et al. Hierarchically porous binder-free silicalite-1 discs: a novel support for all-zeolite membranes[J], J Mater Chem, 2011, 21: 8822-8828.
[25] Kosinov N, Gascon J, Kapteijn F, et al.  Recent developments in zeolite membranes for gas separation[J], J Membr Sci, 2015, 499: 65-79.
[26] Carreon M A, Li S, Falconer J L, et al. Alumina-supported SAPO-34 membranes for CO2/CH4 separation[J], J Am Chem Soc, 2008, 130: 5412-5413.
[27] Poshusta J C, Tuan V A, Pape E A, et al. Separation of light gas mixtures using SAPO-34 membranes[J], AICHE J, 2000, 46: 779-789.
[28] Liu B, Tang C, Li X, et al. High-performance SAPO-34 membranes for CO2 separations from simulated flue gas[J], Microporous Mesoporous Mater, 2020, 292: 109712.
[29] Kiadehi A D, Taghizadeh M, Rami M D. Preparation of Pd/SAPO-34/PSS composite membranes for hydrogen separation: Effect of crystallization time on the zeolite growth on PSS support[J], J Ind Eng Chem, 2020, 81: 206-218.
[30] Tian Y, Fan L, Wang Z, et al. Synthesis of a SAPO-34 membrane on macroporous supports for high permeance separation of a CO2/CH4 mixture[J], J Mater Chem, 2009, 19: 7698-7703.
[31] Rehman R U, Song Q, Peng L, et al. Hydrophobic modification of SAPO-34 membranes for improvement of stability under wet condition[J], Chinese J Chem Eng, 2019, 27: 2397-2406.
[32] Yang S, Chiang Y, Nair S. Scalable one-step gel conversion route to high-performance CHA zeolite hollow fiber membranes and modules for CO2 separation[J], Energy Technol-Ger, 2019, 7(9): 1900494.
[33] 李刚, 王金渠, 杨建华, 等. 二次生长法合成SAPO-34沸石膜及其气体渗透性能[J], 硅酸盐通报, 2009, 28: 887-892.
[34] Jabbari Z, Fatemi S, Davoodpour M. Comparative study of seeding methods; dip-coating, rubbing and EPD, in SAPO-34 thin film fabrication[J], Adv Powder Technol, 2014, 25: 321-330.
[35] Simonot-Grange M H, Waldeck A, Barthomeuf D, et al. Contribution to the study of framework modification of SAPO-34 and SAPO-37 upon water adsorption by thermogravimetry[J], Thermochim Acta, 1999, 329: 77-82.
[36] Rehman R U, Song Q, Peng L, et al. A facile coating to intact SAPO-34 membranes for wet CO2/CH4 mixture separation[J], Chem Eng Res Des, 2020, 153: 37-48.
[37] Najafi N, Askari S, Halladj R. Hydrothermal synthesis of nanosized SAPO-34 molecular sieves by different combinations of multi templates[J], Powder Technol, 2014, 254: 324-330.
[38] 王金渠, 杨建华, 李华征,等. 沸石分子筛膜研究进展[J]. 膜科学与技术, 2014, 34(3): 1-7.
[39] 郝阿辉, 刘晓红, 刘秀凤, 张宝泉. 微波辅助二次生长法合成SAPO-34分子筛膜与关键影响因素[J]. 化工学报, 2017, 068(002): 716-722.
[40] Zhang Y, Wang M, Liu S, et al. Mild template removal of SAPO-34 zeolite membranes in wet ozone environment[J], Sep Purif Technol, 2019, 228: 115758.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号