Position:Home >> Abstract

Preparation and CO2 separation performance of pore engineered MOF-808 based mixed matrix membranes
Authors: ZHANG Mengmeng, GUO Xiangyu, HUANG Hongliang, ZHONG Chongli
Units: State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
KeyWords: metal-organic frameworks; mixed matrix membranes; CO2 separation; post-synthetic modification
ClassificationCode:TQ 028.8
year,volume(issue):pagination: 2021,41(3):1-8

Abstract:
 The formic acid molecules coordinated to Zr-O clusters in MOF-808 can be easily substituted through post-synthetic modification, providing an efficient way for the engineering of its pore environment. Here, L-histidine (His), a carboxylic acid molecule with rich nitrogen-containing groups, was selected to modify the MOF-808 nanoparticles synthesized through microwave method in this work. CO2 adsorption isotherms indicate that introducing His with nitrogen-containing functional groups into the pore channels of MOF-808 can improve its CO2 affinity and CO2/CH4 separation. Furthermore, a new type of mixed matrix membranes (MMMs) was prepared through the combination of MOF-808-His and 6FDA-DAM. The effect of pore modification on CO2 separation performance of MOF-808/6FDA-DAM MMMs was systematically analyzed by gas separation performance tests and membrane microstructure characterization. The results show that the introduction of His in MOF-808 can significantly improve its selective adsorption capacity towards CO2, and thus improve the CO2/CH4 separation performance of the MMMs. When 10 wt% MOF-808-His nanoparticles were incorporated, the CO2 permeability of the membrane was 764 Barrer, and the CO2/CH4 separation factor was 32.4, which was 104% and 35% respectively higher than that of the pure 6FDA-DAM membrane, exceeding the Robeson upper bound for CO2/CH4 separation.

Funds:
国家自然科学基金项目(21878229, 22008179);天津市科技计划项目(19PTSYJC00020)

AuthorIntro:
第一作者:张萌萌(1994—),女,河北邢台人,硕士研究生,主要研究方向为MOF基复合膜的制备

Reference:
 [1] Bernardo P, Drioli E, Golemme G. Membrane gas separation: A review/state of the art[J]. Ind Eng Chem Res, 2009, 48(10): 4638-4663.
[2] Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. J Membr Sci, 1991, 62: 165-185.
[3] Robeson L M. The upper bound revisited[J]. J Membr Sci, 2008, 320(1-2): 390-400.
[4] Chung T S, Jiang L Y, Li Y, et al. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation[J]. Prog Polym Sci, 2007, 32(4): 483-507.
[5] Aroon M A, Ismail A F, Matsuura T, et al. Performance studies of mixed matrix membranes for gas separation: A review[J]. Sep Purif Technol, 2010, 75(3): 229-242.
[6] Rezakazemi M, Amooghin A E, Montazer-Rahmati M M, et al. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions[J]. Prog Polym Sci, 2014, 39(5): 817-861.
[7] Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530.
[8] Seoane B, Coronas J, Gascon J, et al. Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?[J]. Chem Soc Rev, 2015, 44(8): 2421-2454.
[9] Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations[J]. Chem Rev, 2012, 112(2): 869-932.
[10] Sumida K, Rogow D L, Mason J A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chem Rev, 2012, 112(2): 724-781.
[11] Cheng Y, Ying Y, Japip S, et al. Advanced porous materials in mixed matrix membranes[J]. Adv Mater, 2018, 30(47): 1802401.
[12] Danny M S, Moreton J C, Benz L, et al. Metal-organic frameworks for membrane-based separations[J]. Nat Rev Mater, 2016, 1(12): 16078.
[13] Bae T H, Lee J S, Qiu W, et al. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals[J]. Angew Chem Int Ed, 2010, 49(51): 9863-9866.
[14] Guo X, Huang H, Ban Y, et al. Mixed matrix membranes incorporated with amine-functionalized titanium-based metal-organic framework for CO2/CH4 separation[J]. J Membr Sci, 2015, 478: 130-139.
[15] Hwang S, Semino R, Seoane B, et al. Revealing the transient concentration of CO2 in a mixed-matrix membrane by IR microimaging and molecular modeling[J]. Angew Chem Int Ed, 2018, 57(18): 5156-5160.
[16] Furukawa H, Gándara F, Zhang Y B, et al. Water adsorption in porous metal–organic frameworks and related materials[J]. J Am Chem Soc, 2014, 136(11): 4369-4381.
[17] Batchman J E, Smith Z P, Li T, et al. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals[J]. Nat Mater, 2016, 15(8): 845-849.
[18] Li Z Q, Yang J C, Sui K W, et al. Facile synthesis of metal-organic framework MOF-808 for arsenic removal[J]. Mater Lett, 2015, 160: 412-414.
[19] Baek J, Rungtaweevoranit B, Pei X, et al. Bioinspired metal–organic framework catalysts for selective methane oxidation to methanol[J]. J Am Chem Soc, 2018, 140(51): 18208-18216.
[20] 郭翔宇, 阳庆元. 含开放金属位点MIL-101(Cr)掺杂的混合基质膜制备及其CO2分离性能[J]. 化工学报, 2017, 68(11): 4323-4332.
[21] Stern S A. The “Barrer” permeability unit[J]. J Polym Sci Pol Phys, 1968, 6: 1933-1934.
[22] Koros W J, Ma Y H, Shimidzu T. Terminology for membranes and membrane processes (IUPAC Recommendations 1996)[J]. Pure Appl Chem, 1996, 68: 1479-1489.
[23] Souza V C, Quadri M G N. Organic-inorganic hybrid membranes in separation processes: A 10-year review[J]. Braz J Chem Eng, 2013, 30(4): 683-700.
[24] Hua Y, Wang H, Li Q, et al. Highly efficient CH4 purification by LaBTB PCP-based mixed matrix membranes[J]. J Mater Chem A, 2018, 6(2): 599-606.
[25] Zornoza B, Martinez-Joaristi A, Serra-Crespo P, et al. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures[J]. Chem Commun, 2011, 47(33): 9522-9524.
[26] Chen X Y, Vinh-Thang H, Rodrigue D, et al. Amine-functionalized MIL-53 metal-organic framework in polyimide mixed matrix membranes for CO2/CH4 separation[J]. Ind Eng Chem Res, 2012, 51(19): 6895-6906.
[27] Japip S, Wang H, Xiao Y, et al. Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation[J]. J Membr Sci, 2014, 467: 162-174.
[28] Ban Y, Li Z, Li Y, et al. Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture[J]. Angew Chem Int Ed, 2015, 54(51): 15483-15487.
[29] Xiang L, Sheng L, Wang C, et al. Amino-functionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation[J]. Adv Mater, 2017, 29(32): 1606999.
[30] Sabetghadam A, Seoane B, Keskin D, et al. Metal organic framework crystals in mixed-matrix membranes: impact of the filler morphology on the gas separation performance[J]. Adv. Funct Mater, 2016, 26(18): 3154-3163.
[31] Boroglu M S, Yumru A B. Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation[J]. Sep Purif Technol, 2017, 173: 269-279.
[32] Ahmad M Z, Peters T A, Konnertz N M, et al. High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes[J]. Sep Purif Technol, 2020, 230: 115858.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号