Preparation and characterization of graphene oxide modified polyethyleneimine/sodium lignosulfonate nanofiltration membrane |
Authors: GENG Xin1, YAN Qing1, YAO Yuanyuan1, LI Jiding1, LEI Jiandu2, WANG Luying |
Units: 1. Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China; 2. Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China |
KeyWords: nanofiltration membrane; layer-by-layer assembly; graphene oxide; sodium lignosulfonate; polyethyleneimine |
ClassificationCode:O636.2; TQ 028.8 |
year,volume(issue):pagination: 2021,41(3):37-43 |
Abstract: |
On the basis of polyethyleneimine (PEI)/sodium lignosulphonate (SL) nanofiltration membranes, graphene oxide (GO) modified PEI/SL nanofiltration membranes were prepared through layer-by-layer assembly technology. The characterizations, such as ATR-FTIR, XPS, SEM, have be used to study the influence of GO on the structure of the composite membrane. The results show that the self-assembly process can successfully prepare GO modified PEI/SL membranes, in which the GO sheets are incorporated in the PEI/SL layer. It is also found that the GO distributes better in PEI than that in SL. Then the nanofiltration performance, tested by using 2 g/L MgSO4 solution at the operating pressure of 1.0 MPa, indicates that the separation performance is improved when 0.025 g/L to 0.035 g/L GO dispersed in the PEI solution or 0.015 g/L to 0.025 g/L GO dispersed in SL solution. The optimal membrane exhibits the rejection reaching 90%, which is 19% higher than the PEI/SL membrane. In this paper, the GO modified nanofiltration membrane prepared by layer-by-layer self-assembly method can be provide a reference for the improvement in nanofiltration performance. |
Funds: |
中央高校基本科研业务费专项资金 (2019ZY01); 国家自然科学基金 (21736001、21776153、21978024). |
AuthorIntro: |
耿欣(1996年-),女,河南安阳人,硕士,从事方向为膜材料与膜改性方面的研究. |
Reference: |
[1] Lee A, Elam J W, Darling S B. Membrane materials for water purification: design, development, and application[J]. Environ Sci-Wat Res Technol, 2016, 2(1): 17-42. [2] 陈宇昊, 刘家辉, 刘娟,等.新型复合纳滤膜研究进展[J]. 化工进展, 2020, 13(1): 2020-1094. [3] 张金苗, 贾瑞, 李树轩,等.共价层层自组装纳滤膜的制备及性能研究[J]. 膜科学与技术, 2020, 40(01): 139-147. [4] Lau W J, Ismail A F, Misdan N, et al. A recent progress in thin film composite membrane: A review[J]. Desalination, 2012, 287: 190-199. [5] Liao K, Lu F, Liu C, et al. Preparation and Research of Butylene Fipronil Microencapsulation by Layer-by-Layer Polyelectrolyte Self-Assembly[J]. J MACROMOL SCI A, 2015, 52: 374-380. [6] Paterno L G, M L H C. Influence of different dopants on the adsorption, morphology, and properties of self‐assembled membranes of poly (o‐ethoxyaniline) [J]. J Appl Polym Sci, 2002, 83: 1309-1316. [7] 朱媛媛, 蒋新元, 胡迅. 木质素基吸附材料的制备及其吸附性能研究[J]. 环境科学与技术, 2009, 32(01): 71-74. [8] 严庆, 代娟, 刘旺衢,等. ZIF-67改性木质素磺酸钠/聚乙烯亚胺层层自组装膜的纳滤性能研究[J]. 离子交换与吸附, 2019, 35(01): 9-19. [9] 冯才兴, 李盟, 袁浩,等. 双间距亚纳米复合通道g-C_3N_4/GO膜对一价/多价离子盐的筛分[J]. 膜科学与技术, 2020, 40(02): 30-38. [10] Wang N, Ji S, Zhang G, et al. Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation[J]. Chem Eng J, 2012, 213: 318-329. [11] Zhao G, Wen T, Chen C, et al. Synthesis of graphene -based nanomaterials and their application in energy-related and environmental-related areas[J]. RSC Advances, 2012, 2(25): 9286-9303. [12] 王朋辉, 李怡恩, 张亚涛.氧化石墨烯尺寸调控及其复合膜分离性能研究[J]. 膜科学与技术, 2019, 39(03): 62-69. [13] Kim H J, Lim M Y, Jung K H, et al. High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides[J]. J Mater Chem A, 2015, 3: 6798-6809. [14] Wei J, Hu Y, Liang Y, et al. Graphene oxide/core–shell structured metal–organic framework nano-sandwiches and their derived cobalt/N-doped carbon nanosheets for oxygen reduction reactions[J]. J Mater Chem A, 2017, 5: 10182-10189. [15] Zhang X, Liu W, Yang D, et al. Biomimetic Supertough and Strong Biodegradable Polymeric Materials with Improved Thermal Properties and Excellent UV‐Blocking Performance [J]. Adv Funct Mater, 2019, 29, 1806912. [16] 李方, 孟蝶. 氧化石墨烯:膜科学的机遇与挑战[J]. 膜科学与技术, 2015, 35(6): 107-112. [17] Joshi R K, Carbone P, Wang F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J].Science,2014,343(6172): 752-754. [18] 田隆, 刘婷, 孙克宁. 用于水质净化的氧化石墨烯膜研究进展[J]. 化工学报, 2020, 71(09): 4112-4130. [19] Q Nan, P Li, B Cao. Fabrication of positively charged nanofiltration membrane via the layer-by-layer assembly of graphene oxide and polyethylenimine for desalination[J]. Appl Surf Sci, 2016, 387: 521-528. [20] 高克,许中煌,洪昱斌,等. 氧化石墨烯-陶瓷复合纳滤膜的层层自组装制备及其性能[J]. 化工学报, 2017, 68(5): 2178-2185. [21] 许中煌, 雷萍萍, 洪昱斌,等. 氧化石墨烯/碱式硫酸铝掺杂聚醚砜/聚酰胺复合纳滤膜的制备及其性能[J]. 化工学报, 2018, 69(09): 4066-4074. [22] Wang J, Gao X, Wang J, et al. O-(carboxymethyl)-chitosan nanofiltration membrane surface functionalized with graphene oxide nanosheets for enhanced desalting properties.[J]. Acs Appl Mater Interfaces, 2015, 7(7): 4381-4389. [23] R W Kibechu, D T Ndinteh, T A M Msagati, et al. Effect of incorporating graphene oxide and surface imprinting on polysulfone membranes on flux, hydrophilicity and rejection of salt and polycyclic aromatic hydrocarbons from water[J]. Phys Chem Earth , 2017, 100: 126-134. [24] L He, L F Dumée, C Feng, et al. Promoted water transport across graphene oxide–poly(amide) thin film composite membranes and their antibacterial activity[J]. Desalination , 2015, 365: 126-135. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号