Position:Home >> Abstract

Preparation of modified ZIF90-Pebax mixed matrix membrane and its CO2 separation performance
Authors: Li Dongsheng, Ding Rui, Na Tiancheng, Ruan Xuehua, Jiang Xiaobin, He Gaohong, Xiao Wu *
Units: State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China
KeyWords: ZIF-90; CO2/N2 separation; interface effect; mixed matrix membrane
ClassificationCode:TQ051.893
year,volume(issue):pagination: 2021,41(4):15-24

Abstract:
 In order to solve some general problems of the MOFs-based mixed matrix membrane, such as the breathing effect of the fillers, the interface effect between the polymer and the dopant, etc., this work used ZIF-90 which have extremely stable framework structure as the doping material, and then the fillers were modified by amines with different chain length structures by the means of post-synthetic modification (PSM). The influence of different chain length structures and their dosage on ZIF-90 and the gas separation performance of its Pebax-based mixed matrix membrane was explored. We found that the modification of amine alkanes not only does not change the crystal structure of ZIF-90, but can also forms a "fluff"-like structure on the surface of ZIF-90, which can form an organic-organic highly compatible interface. In addition, although the "fluff" structure will reduce the specific surface area and pore volume of the filler itself, it will cross-entangle the polymer chain to form a hardened layer with a large amount of free volume when the length and quantity are appropriate. Differ from amino-modified MOFs, the free volume in the hardened layer can also significantly improve the separation performance of the mixed matrix membrane. Compared with pure ZIF-90/Pebax, the PZ90/Pebax series mixed matrix membranes modified with n-propylamine have improved CO2/N2 selectivity and CO2 permeability. The best separation performance was obtained at 20% modification degree, its CO2/N2 selectivity is 70, and the CO2 permeability reached 140 Barrer, which was increased by 45.8% and 79.4% respectively compared with pure Pebax, and very close to the Robeson upper limit in 2008.

Funds:
国家自然科学基金创新研究群体项目(22021005);国家重点研发计划项目(2019YFE0119200)。

AuthorIntro:
李东升(1996-),男,山东青岛人,硕士研究生,从事气体分离膜的研究,E-mail:845669309@qq.com

Reference:
 [1] D. M. D’Alessandro et al. Carbon dioxide capture: prospects for new materials [J]. Angew Chem Int Ed Engl, 2010, 49: 6058-6082.
[2] 刘冰,姚杰,李丹,孙浩.[bmim][Tf_2N]@UiO-66-NH2/聚酰亚胺混合基质膜的制备及气体分离性能[J].膜科学与技术,2020,40(02):14-21+52.
[3] Li J-Y, Wang D K, Tseng H-H, et al. Solvent effects on diffusion channel construction of organosilica membrane with excellent CO2 separation properties [J]. J Membr Sci, 2021, 618: 118758.
[4] Liu Y, Wu H, Wu S, et al. Multifunctional covalent organic framework (COF)-Based mixed matrix membranes for enhanced CO2 separation [J]. J Membr Sci, 2021, 618: 118693.
[5] Robeson L M. The upper bound revisited [J]. J Membr Sci, 2008, 320(1-2): 390-400.
[6] Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati M M, et al. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions [J]. Prog Polym Sci, 2014, 39(5): 817-861.
[7] Vinobal M, Bhagiyalakshmi M, Alqaheem Y, et al. Recent progress of fillers in mixed matrix membranes for CO2 separation: A review [J]. Sep Purif Technol, 2017, 188: 431-450.
[8] Zhou H C, Long J R, Yaghi O M. Introduction to metal-organic frameworks [J]. Chem Rev, 2012, 112(2): 673-674.
[9] Zhou S, Wei Y, Zhuang L, et al. Introduction of metal precursors by electrodeposition for the in situ growth of metal–organic framework membranes on porous metal substrates [J]. J Mater Chem A, 2017, 5(5): 1948-1951.
[10] Zhang M, Dai Q, Zheng H, et al. Novel MOF-Derived Co@N-C Bifunctional Catalysts for Highly Efficient Zn-Air Batteries and Water Splitting [J]. Adv Mater, 2018, 30(10): 1705431.
[11] Jiao L, Wang Y, Jiang H L, et al. Metal-Organic Frameworks as Platforms for Catalytic Applications [J]. Adv Mater, 2018, 30(37): 1703663.
[12] Masih D, Cheernikova V, Shekhah O, et al. Zeolite-like Metal-Organic Framework (MOF) Encaged Pt(II)-Porphyrin for Anion-Selective Sensing [J]. ACS Appl Mater Interfaces, 2018, 10(14): 11399-11405.
[13] Erucar I, Keskin S. Efficient Storage of Drug and Cosmetic Molecules in Biocompatible Metal Organic Frameworks: A Molecular Simulation Study [J]. Ind Eng Chem Res, 2016, 55(7): 1929-1939.
[14] Meshkat S, Kaliaguine S, Rodrigue D. Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation [J]. Sep Purif Technol, 2020, 235: 116150.
[15] Wang X, Chen J, Fang M, et al. ZIF-7/PDMS mixed matrix membranes for pervaporation recovery of butanol from aqueous solution [J]. Sep Purif Technol, 2016, 163: 39-47.
[16] Gong Y, Gao S, Tian Y, et al. Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH2 active layer for high-performance desalination [J]. J Membr Sci, 2020, 600: 117874.
[17] Guo A, Ban Y, Yang K, et al. Metal-organic framework-based mixed matrix membranes: Synergetic effect of adsorption and diffusion for CO2/CH4 separation [J]. J Membr Sci, 2018, 562: 76-84.
[18] Shan M, Seoane B, Andres-Garcia E, et al. Mixed-matrix membranes containing an azine-linked covalent organic framework: Influence of the polymeric matrix on post-combustion CO2-capture [J]. J Membr Sci, 2018, 549: 377-384.
[19] 田洋洋,梁家晨,沈钦,王正宫,靳健.MOF基混合基质膜的界面设计及气体分离研究进展[J].膜科学与技术,2019,39(01):125-135.
[20] C Cheng Y, Ying Y, Zhai L, et al. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation [J]. J Membr Sci, 2019, 573: 97-106.
[21] Kolokolov D I, Diestel L, Caro J, et al. Rotational and Translational Motion of Benzene in ZIF-8 Studied by 2H NMR: Estimation of Microscopic Self-Diffusivity and Its Comparison with Macroscopic Measurements [J]. J Phys Chem C, 2014, 118(24): 12873-12879.
[22] Zheng B, Fu F, Wang L L, et al. Investigation of the Linker Swing Motion in the Zeolitic Imidazolate Framework ZIF-90 [J]. J Phys Chem C, 2018, 122(13): 7203-7209.
[23] Fang M, Wu C, Yang Z, et al. ZIF-8/PDMS mixed matrix membranes for propane/nitrogen mixture separation: Experimental result and permeation model validation [J]. J Membr Sci, 2015, 474(103-13.
[24] Wang Z, Cohen S M. Postsynthetic modification of metal-organic frameworks [J]. Chem Soc Rev, 2009, 38(5): 1315-1329.
[25] Mubashir M, Yeong Y F, Lau K K, et al. Efficient CO2/N2 and CO2/CH4 separation using NH2-MIL-53(Al)/cellulose acetate (CA) mixed matrix membranes [J]. Sep Purif Technol, 2018, 199(140-51.
[26] Song C, Li R, Fan Z, et al. CO2/N2 separation performance of Pebax/MIL-101 and Pebax /NH2-MIL-101 mixed matrix membranes and intensification via sub-ambient operation [J]. Sep Purif Technol, 2020, 238: 116500.
[27] Tien-Binh N, Rodrigue D, Kaliaguine S. In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control [J]. J Membr Sci, 2018, 548: 429-438.
[28] Zhang H, Wang Y. Poly(vinyl alcohol)/ZIF-8-NH2mixed matrix membranes for ethanol dehydration via pervaporation [J]. AIChE J, 2016, 62(5): 1728-1739.
[29] Zhang H-F, Li M, Wang X-Z, et al. Fine-tuning metal–organic framework performances by spatially-differentiated postsynthetic modification [J]. J Mater Chem A, 2018, 6(10): 4260-4265.
[30] Xu S, Zhang H, Yu F, et al. Enhanced ethanol recovery of PDMS mixed matrix membranes with hydrophobically modified ZIF-90 [J]. Sep Purif Technol, 2018, 206: 80-89.
[31] Silvestre-Albero A M, Juárez-Galán J M, Silvestre-Albero J, et al. Low-Pressure Hysteresis in Adsorption: An Artifact? [J]. J Phys Chem C, 2012, 116(31): 16652-16655.
[32] Ding R, Zheng W, Yang K, et al. Amino-functional ZIF-8 nanocrystals by microemulsion based mixed linker strategy and the enhanced CO2/N2 separation [J]. Sep Purif Technol, 2020, 236: 116209.
[33] Sarmadi R, Salimi M, Pirouzfar V. The assessment of honeycomb structure UiO-66 and amino functionalized UiO-66 metal-organic frameworks to modify the morphology and performance of Pebax(R)1657-based gas separation membranes for CO2 capture applications [J]. Environ Sci Pollut Res Int, 2020, 27(32): 40618-40632.
[34] Shen J, Liu G, Huang K, et al. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture [J]. Angew Chem Int Ed Engl, 2015, 54(2): 578-582.
[35] Li H, Tuo L, Yang K, et al. Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid [J]. J Membr Sci, 2016, 511: 130-142.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号