Position:Home >> Abstract

Effect of pore size of outer-coated ceramic membranes on water and heat recovery performance in flue gas
Authors: CAO Qinfeng1,MENG Qingying1,JI Chao1,NIU Shufeng2, LI Li2,QI Hong1
Units: 1Membrane Science and Technology Research Center, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, China;2 Hongyi Ceramic Membranes Research Institute, Nanjing Hongyi Ceramic Nanofiltration Membranes Co., Ltd. Nanjing 210009, Jiangsu, China
KeyWords: ceramic membranes; pore size; flue gas dehumidification; membrane condensation
ClassificationCode:TQ 174.9
year,volume(issue):pagination: 2021,41(4):102-109

Abstract:
 The tubular outer-coated ceramic membrane with average pore size of 5,10,20 and 50 nm were used to test the performance of ceramic membrane condensers by using simulated flue gas. Effects of air flow rate,inlet gas temperature and average pore sizes of membrane on water and heat recovery performance during membrane condensation were investigated. Results showed that water and heat recovery performance of ceramic membranes followed the tendency of 5 nm <10 nm ≈ 50 nm < 20 nm. In this work, ceramic membranes with the average pore size of 20 nm exhibited the optimized water and heat recovery as follow : water flux and water recovery were 21.5 kg·m-2·h-1 and 66.0 %, respectively. Heat flux and heat recovery were 47.2 kg·m-2·h-1 and 41.2 %, respectively. 

Funds:
国家自然科学基金项目(21490581);中国石油化工股份有限公司资助项目(317008-6)

AuthorIntro:
曹钦丰(1995-),男,江苏镇江人,硕士生,主要从事陶瓷膜的制备及烟气中水、热回收研究

Reference:
 [1] 2018中国水资源公报[EB/OL].
http://www.mwr.gov.cn/sj/tjgb/szygb/201907/t20190712_1349118.html.
[2] Shi W, Lin C, Chen W, et al. Environmental effect of current desulfurization technology on fly dust emission in China[J]. Renewable & Sustainable Energy Reviews, 2017, 72: 1-9.
[3] 赵钦新, 苟远波. 凝结换热与冷凝式锅炉原理及应用(续完)[J]. 工业锅炉, 2013, (2): 1-7.
[4] 汪洋. 燃煤电站锅炉烟气余热与水分联合回收技术展望与分析[J]. 发电与空调, 2012, 33(2): 26-28.
[5] Levy E, Bilirgen H, Jeong K, et al. Recovery of water from boiler flue gas[R]. United States: Gas Technology Institute, 2008.
[6] Drioli E, Santoro S, Simone G et al. ECTFE membrane preparation for recovery of humidified gas streams using membrane condenser[J]. Reactive and Functional Polymers, 2014, 79: 1-7.
[7] Macedonio F, Mirko F, Barbieri G, et al. Recovery of water and contaminants from cooling tower plume[J], Environmental Engineering Research, 2018, 192.
[8] Bruntti A, Macedonio F, Barbieri G, et al Membrane condenser as emergingtechnology for water recovery and gas pretreatment: current status and perspectives[J],BMC Chemical Engineering, 2019.
[9] Bao A, Wang D X, Lin C X, et al. Nanoporous membrane tube condensing heat transfer enhancement study[J]. International Journal of Heat and Mass Transfer, 2015, 84: 456-462.
[10] Soleimanikutanaei S, Lin C X, Wang D X. Modeling and simulation of cross-flow transport membrane condenser heat exchangers[J]. International Communications in Heat & Mass Transfer, 2018, 95: 92-97.
[11] Soleimanikutanaei S, Lin C X, Wang D X, Numerical modeling and analysis of transport membrane condensers for waste heat and water recovery from flue gas[J]. International Journal of Thermal Sciences, 2019, 136: 96-106.
[12] Tu T, Cui Q F, Liang F H, et al. Water recovery from stripping gas overhead CO2 desorber through air cooling enhanced by transport membrane condensation [J]. Separation And Purification Technology, 2019, 215:625-633.
[13] Hu H W, Tang G H, Niu D, et al. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery[J]. Scientific Reports, 2016, 6: 27274.
[14] Yue M, Zhao S F, Feron P H M, et al. Multichannel Tubular Ceramic Membrane for Water and Heat Recovery from Waste Gas Streams[J]. Industrial & Engineering Chemistry Research, 2016, 55(9): 2615-2622.
[15] 孟庆莹, 曹语,漆虹等,过程参数对采用多孔陶瓷超滤膜回收烟气中余热和水性能的影响[J], 化工学报, 2018, 6: 2519–2525.
[16] 曹语,季超,漆虹等,陶瓷膜冷凝器用于烟气脱白烟过程的中试研究[J],化工学报, 2019, 70(6): 2192-2201.
[17] Deinert M R, Parlange J Y. Effect of pore structure on capillary condensation in a porous medium[J]. Physical Review E, 2009, 79: 021202.
[18] Wang D X, Bao A, Kunc W, et al. Coal power plant flue gas waste heat and water recovery[J]. Applied Energy, 2012, 91: 341-348.
[19] Yan S P, Cui Q F, Xu L Q, et al. Reducing CO2 regeneration heat requirement through waste heat recovery from hot stripping gas using nanoporous ceramic membrane [J]. International Journal of Greenhouse Gas Control, 2019, 82: 269-280.
[20] Yang B, Chen H P, Ye C, et al. Experimental study on differences of heat and mass flux between 10-and 50-nm pore-sized nano-porous ceramic membranes [J]. Journal of Australian Ceramic Society, 2019, 55(2): 343-354.
[21] Kim J F, Park A, Kim S, et al. Harnessing Clean Water from Power Plant Emissions Using Membrane Condenser Technology[J]. ACS Sustainable Chemistry & Engineering, 2018, 5: 6425-6433.
[22] Chen H P, Zhou Y N, Su X, et al. Experimental study of water recovery from flue gas using hollow micro-nano porous ceramic composite membranes[J]. Journal of Industrial and Engineering Chemistry, 2018, 57: 349-355.
[23] Che D F, Da Y D, Zhuang Z N, et al. Heat and mass transfer characteristics of simulated high moisture flue gases[J]. Heat & Mass Transfer, 2005, 41(3): 250-256.
[24] Sijbesma H, Nymeijer K, Heijboer R, et al. Flue gas dehydration using polymer Membranes[J]. Journal Membrane Science, 2008, 313(1): 263-276. 
[25] Lin H, Thompson S M, Serbanescu-Martin, et al. Dehydration of natural gas using membranes. Part I: Composite membranes[J]. Journal Membrane Science, 2012, 413: 70-81.
[26] Cao J Y, Pan J, Cui Z L, et al. Improving efficiency of PVDF membranes for recovering water from humidified gas streams through membrane condenser[J]. Chemical Engineering Science, 2019, 210: 115234.
[27] Li Z H, Zhang H, Chen H P, et al. Water vapor capture using microporous ceramic membrane[J]. Desalination, 2020, 482: 114405.
[28] Chen C, Liang D H, Zhang Y T, et al. Pilot-scale study on flue gas moisture recovery in a coal-fired power plant[J] Separation and Purification Technology, 2021, 254: 117254
[29] Zolfaghari A, Dehghanpour H, Holyk J. Water sorption behaviour of gas shales: I. Role of clays[J]. International Journal of Coal Geology, 2017, 179: 130-138.
[30] Zolfaghari A, Dehghanpour H, Xu M. Water sorption behaviour of gas shales: II. Pore size distribution[J]. International Journal of Coal Geology, 2017, 179: 187-195.
[31] Zou D, Ke X, Qiu M, et al. Design and fabrication of whisker hybrid ceramic membranes with narrow pore size distribution and high permeability via co-sintering process[J]. Ceramics International, 2018, 44(17): 21159-21169.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号