Position:Home >> Abstract

Mo and N co-doped integrated membrane electrode in lithium sulfur batteries
Authors: JIANG Fulin, LI Xiangcun, CHU Zhong, JIANG Xiaobin, XIAO Wu, WU Xuemei, HE Gaohong
Units: State Key Laboratory of Fine Chemicals, Research Center of Membrane Science & Technology, Dalian University of Technology, Dalian 116024, Liaoning, China
KeyWords: phase inversion method; integrated membrane electrode; catalysis; three-dimensional conductive network; lithium sulfur batteries
ClassificationCode:TQ152
year,volume(issue):pagination: 2021,41(5):1-10

Abstract:
  In order to simplify the structure of batteries and improve the performance of batteries, the integrated membrane of electrode membrane-interlayer was constructed by phase inversion method, and the MoNCNTs/CNTs-PAN was further prepared by doping Mo elemental substance. The Mo and N co-doped cathode membrane can adsorb and catalyze the transformation of polysulfide, effectively inhibiting the "shuttle effect". The interlocking three-dimensional porous network and good pore structure in the membrane can enhance the electrical conductivity and effectively buffer the volume expansion of the active material. The integrated membrane electrode shows excellent electrochemical performance, with a discharge specific capacity of 927.2 mA h/g and a coulomb efficiency of 98.9 % at a low sulfur load at 0.5 C after 100 cycles, even at a high sulfur loading of 4.0 mg/cm2, a discharge specific capacity of 530.1 mA h/g can be maintained at 0.2 C after 100 cycles, the average capacity decay rate per cycle is only 0.09 %. The results show that the integrated membrane has a good application prospect in lithium-sulfur batteries.

Funds:
国家自然科学基金(21676043,21506028,21706023);大连市科创基金(2019J12SN68)

AuthorIntro:
姜福林(1995-), 男,山东烟台人,硕士,研究方向为锂硫电池电极及隔层材料

Reference:
 [1] Kou W, Chen G H, Liu Y, et al. Patterned macroporous Fe3C/C membrane-induced high ionic conductivity for integrated Li-sulfur battery cathodes[J]. J Mater Chem A, 2019, 7 (36): 20614-20623.
[2] Li X C, Zhang Y, Wang S T, et al. Hierarchically porous C/Fe3C membranes with fast ion-transporting channels and polysulfide-trapping networks for high-areal-capacity Li-S batteries[J]. Nano Lett, 2020, 20 (1): 701-708.
[3] Zhang J, Huang H, Bae J, et al. Nanostructured host materials for trapping sulfur in rechargeable Li-S batteries: structure design and interfacial chemistry[J]. Small Methods, 2018, 2 (1): 1700279.
[4] Bresser D, Passerini S, Scrosati B. Recent progress and remaining challenges in sulfur-based lithium secondary batteries – a review[J]. Chemi Commun, 2013, 49 (90): 10545-10562.
[5] Fang R P, Zhao S Y, Sun Z H, et al. More reliable lithium-sulfur batteries: status, solutions and prospects[J]. Adv Mater, 2017, 29 (48): 1606823.
[6] Zhang J, Shi Y, Ding Y, et al. In situ reactive synthesis of polypyrrole-MnO2 coaxial nanotubes as sulfur hosts for high-performance lithium-sulfur battery[J]. Nano Lett, 2016, 16 (11): 7276-7281.
[7] Hu C, Kirk C, Silvestre-Albero J, et al. Free-standing compact cathodes for high volumetric and gravimetric capacity Li-S batteries[J]. J Mater Chem A, 2017, 5 (37): 19924-19933.
[8] Lee J S, Jun J, Jang J, et al. Sulfur-immobilized, activated porous carbon nanotube composite based cathodes for lithium-sulfur batteries[J]. Small, 2017, 13 (12): 1602984.
[9] Ma Z L, Tao L, Liu D D, et al. Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithium-sulfur batteries[J]. J Mater Chem A, 2017, 5 (19): 9412-9417.
[10] Guo D Y, Chen X A, Wei H F, et al. Controllable synthesis of highly uniform flower-like hierarchical carbon nanospheres and their application in high performance lithium-sulfur batteries[J]. J Mater Chem A, 2017, 5 (13): 6245-6256.
[11] Li X, Cheng X B, Gao M X, et al. Amylose-derived macrohollow core and microporous shell carbon spheres as sulfur host for superior lithium-sulfur battery cathodes[J]. ACS Appl Mater Interfaces, 2017, 9 (12): 10717-10729.
[12] He J R, Luo L, Chen Y F, et al. Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries[J]. Adv Mater, 2017, 29 (34): 1702707.
[13] Cui Z M, Zu C X, Zhou W D, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Adv Mater, 2016, 28 (32): 6926-6931.
[14] Lin Z J, Li X, Huang W L, et al. Active platinum nanoparticles as a bifunctional promoter for lithium-sulfur batteries[J]. ChemElectroChem, 2017, 4 (10): 2577-2582.
[15] Liu Y, Kou W, Li X C, et al. Constructing patch-Ni-shelled Pt@Ni nanoparticles within confined nanoreactors for catalytic oxidation of insoluble polysulfides in Li-S batteries[J]. Small, 2019, 15 (34): 1902431.
[16] Chen Y M, Li X Y, Zhou X Y, et al. Hollow-tunneled graphitic carbon nanofibers through Ni-diffusion-induced graphitization as high-performance anode materials[J]. Energy Environ Sci, 2014, 7 (8): 2689-2696.
[17] Liu S H, Li J, Yan X, et al. Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries[J]. Adv Mater, 2018, 30 (12): 1706895.
[18] Zhu P, Yan C Y, Zhu J D, et al. Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries[J]. Energy Storage Mater, 2019, 17: 220-225.
[19] Wang H Q, Zhang W C, Liu H K, et al. A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium-sulfur batteries[J]. Angew Chem Int Ed, 2016, 55 (12): 3992-3996.
[20] Wang J N, Yang G R, Chen J, et al. Flexible and high-loading lithium-sulfur batteries enabled by integrated three-in-one fibrous membranes[J]. Adv Energy Mater, 2019, 9 (38): 1902001.
[21] Razzaq A A, Yao Y Z, Shah R, et al. High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes[J]. Energy Storage Mater, 2019, 16: 194-202.
[22] Park K, Cho J H, Jang J H, et al. Trapping lithium polysulfides of a Li-S battery by forming lithium bonds in a polymer matrix [J]. Energy Environ Sci, 2015, 8: 2389-2395.
[23] She Z W, Wang H T, Hsu P C, et al. Facile synthesis of Li2S-polypyrrole composite structures for high-performance Li2S cathodes[J]. Energy Environ Sci, 2014,7: 672-676.
[24] Pang Q, Nazar L F. Long-life and high-areal-capacity Li-S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption[J]. ACS Nano, 2016,10: 4111-4118.
[25] Li Y J, Wang C, Wang W Y, et al. Enhanced chemical immobilization and catalytic conversion of polysulfide intermediates using metallic Mo nanoclusters for high-performance Li-S batteries[J]. ACS Nano, 2019, 14 (1): 1148-1157.
[26] Li Z Q, Yin L W. Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance[J]. ACS Appl Mater Interfaces, 2015, 7 (7): 4029-4038.
[27] Pan H, Cheng Z B, Xiao Z B, et al. The fusion of imidazolium-based ionic polymer and carbon nanotubes: one type of new heteroatom-doped carbon precursors for high-performance lithium-sulfur batteries[J]. Adv Funct Mater, 2017, 27 (44): 1703936.
[28] Wang S T, Li X C, Zhang Y, et al. Highly efficient polysulfide trapping and ion transferring within a hierarchical porous membrane interlayer for high-energy lithium-sulfur batteries[J]. ACS Appl Energy Mater, 2020, 3 (5): 5050-5057.
[29] Peng H J, Huang J Q, Cheng X B, et al. Review on high-loading and high-energy lithium–sulfur batteries[J]. Adv Energy Mater, 2017, 7 (24): 1700260.
[30] Wang Y, Su S Y, Cai L J, et al. Monolithic integration of all-in-one supercapacitor for 3D electronics[J]. Adv Energy Mater, 2019, 9 (15): 1900037.
[31] Kou W, Li X C, Liu Y, et al. Triple-layered carbon-SiO2 composite membrane for high energy density and long cycling Li-S batteries[J]. ACS Nano, 2019, 13(5): 5900-5909.
[32] Li X C, Zhang Y, Wang S T,et al. Scalable high-areal-capacity Li-S batteries enabled by sandwich-structured hierarchically porous membranes with intrinsic polysulfide adsorption[J]. Nano Lett, 2020, 20 (9): 6922-6929.
[33] Zhu X B, Ouyang Y, Chen J W, et al. In situ extracted poly (acrylic acid) contributing to electrospun nanofiber separators with precisely tuned pore structures for ultra-stable lithium-sulfur batteries[J]. J Mater Chem A, 2019, 7 (7): 3253-3263.
[34] Zhao M Q, Zhang Q, Huang J Q, et al. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries [J]. Nat Commun, 2014, 5: 3410.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号