Position:Home >> Abstract

Mechanochemical synthesis of mixed ligands MOF filler for highly efficient CO2 separation
Authors: ZHAO Xin,QIAO Zhihua,SUN Yuxiu,GUO Xiangyu ,ZHONG Chongli
Units: State Key Laboratory of Separation Membranes and Membrane Processes,School of Chemical Engineering and technology,Tiangong University,Tianjin 300387,China
KeyWords: Mechanochemical method; ZIF-8-Bim-Ica; Mixed ligands; Mixed matrix membranes; CO2 separation
ClassificationCode:TQ 028.8
year,volume(issue):pagination: 2021,41(5):11-16

Abstract:
 ZIF-8 was synthesized by mechanization method. With ZIF-8 as the parent,the mixed ligands MOF material ZIF-8-Bim-Ica was obtained by mechanochemical means to introduce benzimidazole (Bim) and 2-Imidazolecarboxaldehyde (Ica). Mixed matrix membranes (MMMS) was prepared by mixing with polyether copolyamide (Pebax-1657). The chemical structure of ZIF-8-Bim-Ica was determined by XRD,FTIR and 1H NMR spectra,and the cross section of the mixed matrix membranes were characterized by SEM. The results showed that the structure of ZIF-8 was not damaged after the introduction of Bim and Ica, and the ZIF-8-Bim-Ica particles were evenly dispersed in the Pebax polymer. The addition of ZIF-8-Bim-Ica improved the CO2 permeation flux and the CO2/CH4 selectivity of the mixed matrix membranes. Compared with the pure membrane,the CO2 permeation flux of the mixed matrix membrane with 10 wt% doping amount can reach 269.3 Barrer,increased by 29.3 %,and the CO2/CH4 selectivity is increased from 18.5 to 43.8,and the stability of the membrane can be maintained for at least 40 hours. The ZIF-8-Bim-Ica/Pebax mixed matrix membranes prepared by this method has a high selectivity to CO2,showing a good application prospect in the field of CO2 gas separation.

Funds:
天津市科技计划项目(19PTSYJC00020)

AuthorIntro:
赵新(1995-),男,河北衡水人,硕士研究生,主要研究方向为气体分离膜的制备,Email:zhaoxintgd@163.com

Reference:
 [1] Dong G,Li H,Chen V. Challenges and opportunities for mixed-matrix membranes for gas separation[J]. J. Mater. Chem. A,2013,1: 4610-4630 .
[2] Goh P S,Ismail A F,Sanip S M,et al. Recent advances of inorganic fillers in mixed matrix membrane for gas separation[J]. Separation and Purification Technology,2011,3(81): 243-264.
[3] Wang H,He S,Qin X,et al. Interfacial Engineering in Metal-Organic Framework-Based Mixed Matrix Membranes Using Covalently Grafted Polyimide Brushes[J]. J. Am. Chem. Soc,2018,140(49): 17203–17210.
[4] Denny M S,Cohen S M. In Situ Modification of Metal-Organic Frameworks in Mixed-Matrix Membranes[J]. Angewandte Chemie,2015,127(31): 9157-9160.
[5] Chung T S,Jiang L,Li Y,et al. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation[J]. Progress in Polymer Science,2007,32(4): 483-507.
[6] Furukawa H,Cordova K E,et al. The chemistry and applications of metal-organic frameworks[J]. Science,2013,341(6149): 974.
[7] Hillman F,Brito J,et al. Rapid One-Pot Microwave Synthesis of Mixed-Linker Hybrid Zeolitic-Imidazolate Framework Membranes for Tunable Gas Separations[J]. ACS Applied Materials & Interfaces,2018,10(6): 5586-5593.
[8] Hillman F,Jeong H K. Linker-doped Zeolitic-Imidazolate Frameworks (ZIFs) and their Ultrathin Membranes for Tunable Gas Separations[J]. ACS Applied Materials & Interfaces,2019,11(20): 18377-18385.
[9] Hu C,Lin C,Chiao Y,et al. The Mixing Effect of Ligand on Carbon Dioxide Capture Behavior of Zeolitic Imidazolate Framework/Poly (amide-b-ethylene oxide) Mixed Matrix Membranes[J]. ACS Sustainable Chemistry & Engineering,2018,6(11): 15341-15348.
[10] Thompson J A,Vaughn J T,Brunelli N A,et al. Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas[J]. Microporous & Mesoporous Materials,2014,192: 43-51.
[11] Eum K,Rashidi F,et al. Highly tunable molecular sieving and adsorption properties of mixed-linker zeolitic imidazolate frameworks.[J]. Journal of the American Chemical Society,2015,137(12): 4191-4197.
[12] Zhang C,Xiao Y,Liu D,et al. A hybrid zeolitic imidazolate framework membrane by mixed-linker synthesis for efficient CO2 capture[J]. Chemical Communications,2012,49(6): 600-602.
[13] Hou Q,Wu Y,Zhou S,et al. Ultra-Tuning of the Aperture Size in Stiffened ZIF-8_Cm Frameworks with Mixed-Linker Strategy for Enhanced CO2/CH4 Separation[J]. Angewandte Chemie International Edition,2018,58(1): 327-331.
[14] Banerjee R,Phan A,Wang B,et al. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture[J]. Science,2008,319(5865): 939-943.
[15] Banerjee R,Furukawa H,et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties.[J]. Journal of the American Chemical Society,2009,131(11): 3875.
[16] Karagiaridi O,Bury W,Sarjeant A A,et al. Synthesis and characterization of isostructural cadmium zeolitic imidazolate frameworks via solvent-assisted linker exchange[J]. Chemical Science,2012,3(11): 3256.
[17] Thompson J A,Blad C R,Brunelli N,et al. Hybrid Zeolitic Imidazolate Frameworks: Controlling Framework Porosity and Functionality by Mixed-Linker Synthesis[J]. Chemistry of Materials,2012,24(10): 1930–1936.
[18] Huang Y,Lo W,Kuo Y,et al. Green and rapid synthesis of zirconium metal–organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds[J]. Chemical Communications,2017,53: 5818-5821.
[19] Batista M M,Luque R,et al. Mechanochemistry: Toward Sustainable Design of Advanced Nanomaterials for Electrochemical Energy Storage and Catalytic Applications[J]. ACS Sustainable Chemistry & Engineering,2018,6(8): 9530-9544.
[20] Do J L,Friscic T. Mechanochemistry: A Force of Synthesis[J]. ACS Cent Sci,2017,3(1): 13-19.
[21] Zhou X,Miao Y,Suslick K S,et al. Mechanochemistry of Metal-Organic Frameworks Under Pressure and Shock[J]. Accounts of Chemical Research,2020,53(12): 2806-2815.
[22] 王树清,乔志华,王志. 分离CO2固定载体膜工业化制备技术[J]. 膜科学与技术,2016,36(5): 87-94.
[23] 王树清,乔志华,王志. 以3-甲氧基苄胺改性聚乙烯基胺制备CO2分离膜[J]. 膜科学与技术,2016,36(3): 1-7.
[24] 曹晓畅,王志,乔志华,等. 一步法制备含氨基化合物的非对称CO2分离膜[J]. 化工学报,2018,69(11):4778-4787.
[25] 何玉鹏,王志,乔志华,等. 含有MCM-41分子筛的混合基质复合膜用于CO2分离[J]. 化工学报,2015,66(10):3979-3990.
[26] 瞿媛媛,张玉龙,张丛健,等. 改善MOFs/聚合物混合基质膜气体分离性能的策略[J]. 膜科学与技术,2019,39(2): 135-142.
[27] 田洋洋,梁家晨,沈钦,等. MOF基混合基质膜的界面设计及气体分离研究进展[J]. 膜科学与技术,2019,39(1):129-139.
[28] 郭翔宇,阳庆元,含开放金属位点MIL-101(Cr)掺杂的混合基质膜制备及其CO2分离性能[J]. 化工学报,2017,68(11): 4323-4332.
[29] Guo X,Huang H,Ban Y,et al. Mixed matrix membranes incorporated with amine-functionalized titanium-based metal-organic framework for CO2/CH4 separation[J]. J Membr Sci,2015,478: 130-139.
[30] Jomekian A,Kargari A,et al. Utilization of Pebax 1657 as structure directing agent in fabrication of ultra-porous ZIF-8[J]. Journal of Solid State Chemistry,2016,236: 212-216.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号