Position:Home >> Abstract

Low cost honeycomb ceramic from natural, low grade attapulgite clay
Authors: XUE Ailian, FAN Zhaoru, MAO Hengyang, ZHOU Shouyong, LI Meisheng, ZHAO Yijiang
Units: School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory for Environment Functional Materials, Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian 223300, Jiangsu, China
KeyWords: low-grade attapulgite clay, Al2O3, Honeycomb ceramics, extrusion molding, sintering
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2021,41(6):35-42

Abstract:
 Honeycomb ceramics with regular, parallel channels have high mechanical strength, good thermal shock resistance, high specific surface area and good permeability. The performance of the honeycomb ceramics largely depends on the material and formation process. Low-grade attapulgite clay (LATP) is a natural, non-metallic mineral preferred for its abundance, low cost, inert property and low sintering temperature. In this study, honeycomb ceramics were prepared by extrusion molding and sintering of LATP and alumina. Carbon powder was used for making pores, methyl cellulose for binding, boric acid for sintering, while glycerol and liquid paraffin for plasticizing and lubrication, respectively. Plasticity of the mud was best when the content of water, binder and plasticizer were 17.5-20.0  wt.%, 8-10 wt.% and 3-4 wt.%, respectively. This produced excellent extrusion and subsequently, honeycomb ceramic green with no defects. After sintering at 700 °C for 3 h, the thickness of the walls and pore density were about 0.34 mm and 169 holes/in2, respectively. Open porosity, water absorption, volume density and mechanical strength was 43.43±0.1 %, 25.98±0.1 %, 0.9±0.1 g/cm3, 16.34±1.23 MPa, respectively. Honeycomb ceramics provided a new way for the application of low-grade attapulgite clay.

Funds:
国家自然科学金面上项目(21978109),国家自然科学基金国际(地区)合作与交流项目(22111530109)。

AuthorIntro:
薛爱莲(1977-),女,江苏淮安人,博士,副教授,主要从事先进膜材料与过程研究,E-mail:ailian1977@hytc.edu.cn.

Reference:
 [1] S. K. Hubadillah, Z. Harun, M. H. D. Othman, et al, Preparation and characterization of low cost porous ceramic membrane support from kaolin using phase inversion/sintering technique for gas separation: effect of kaolin content and non-solvent coagulant bath[J], Chem. Eng. Res. Des. 112 (2016) 24-35.
[2] A. Ben, N. Hamdi, M. A. Rodriguez, Preparation and characterization of new ceramic membranes for ultrafiltration[J], Ceram. Int. 44 (2018) 2328-2335.
[3] 李贵佳,刘小鱼, 用于汽车尾气净化的SiC蜂窝陶瓷[J], 中国陶瓷, 8(2014):4-7.
[4] J. G. Yu, X. Y. Li, Z. H Xu, et al, NaOH-modified ceramic honeycomb with enhanced formaldehyde adsorption and removal performance[J], Environ. Sci. Technol. 47 (2013) 9928-9933.
[5] Z. L. Gao, Y. Q. Liu, Z. Q. Gao, Outer wall heat transfer of heat exchanger embedded in honeycomb ceramic packed bed under condition of steam flow medium[J], Energy Metall. Ind. 37 (2018) 29-32.
[6] Z. L. Gao, Y. Q. Liu, Z. Q. Gao, Influence of packed honeycomb ceramic on heat extraction rate of packed bed embedded heat exchanger and heat transfer modes in heat transfer process[J], Int. Commun. Heat Mass. 65 (2015) 76-81.
[7] W. D. Oh, J. X. Lei, A. Veksha, et al, Influence of surface morphology on the performance of nanostructured ZnO-loaded ceramic honeycomb for syngas desulfurization[J], Fuel 211 (2018) 591-599.
[8] A. J. Koivisto, K. I. Kling, A. S. Fonseca, Dip coating of air purifier ceramic honeycombs with photocatalytic TiO2 nanoparticles: A case study for occupational exposure[J], Sci. Total Environ. 630 (2018) 1283-1291.
[9] L. H. Nie, Y. Q. Zheng, J. G. Yu, Efficient decomposition of formaldehyde at room temperature over Pt/honeycomb ceramics with ultra-low Pt content[J], Dalton T. 43 (2014) 12935-12942.
[10] Frank Händle. Extrusion in Ceramic[M], Springer 2007.
[11] B. Fotoohi, S. Blackburn, Study of phase transformation and microstructure in sintering of mechanically activated cordierite precursors[J], J. Am. Ceram. Soc. 95 (2012) 2640-2646.
[12] F. Han, Z. X. Zhong, Y. Yang, et al, High gas permeability of SiC porous ceramics reinforced by mullite fibers[J], J. Eur. Ceram. Soc. 36 (2016) 3909-3917.
[13] X. Z. Guo, X. B. Cai, L. Zhu., et al, Preparation and properties of SiC honeycomb ceramics by pressureless sintering technology[J], J. Adv. Ceram. 3 (2014) 83-88.
[14] N. Ma, L. J. Du, W. T. Liu, et al, Synthesis of honeycomb-like structured porous Si3N4 ceramics with exceptionally high number of cells per square inch[J], Mater. Lett. 175 (2016) 152-156.
[15] J. H. Wang, H. Zhang, X. Y. Meng, et al, Promotion of the alginate gelling method for preparing Al2O3 honeycomb ceramics[J], Adv. Appl. Ceram. 116 (2017) 1-5.
[16] T. T. Xu, C. A. Wang, Effect of two-step sintering on micro-honeycomb BaTiO3 ceramics prepared by freeze-casting process[J], J. Eur. Ceram. Soc. 36 (2016) 2647-2652.
[17] S. L. Feng, F. P. He, J. D. Ye, Fabrication and characterization of honeycomb β-tricalcium phosphate scaffolds through an extrusion technique[J], Ceram. Int. 43 (2017) 6778-6785.
[18] M. Elbadawi, M. Shbeh, High strength yttria-reinforced HA scaffolds fabricated via honeycomb ceramic extrusion[J], J. Mech. Behav. Biomed. 77 (2018) 422-433.
[19] D. W. Zhuang, H. B. Dai, Y. J. Zhong, et al, A new reactivation method towards deactivation of honeycomb ceramic monolith supported cobalt-molybdenum-boron catalyst in hydrolysis of sodium borohydride[J], Int. J. Hydrogen Energ. 2015, 40 (2015) 9373-9381.
[20] C. Wang, F. Yu, M. Y. Zhu, et al, Microspherical MnO2-CeO2-Al2O3 mixed oxide for monolithic honeycomb catalyst and application in selective catalytic reduction of NOx with NH3 at 50-150?°C[J], Chem. Eng. J. 346 (2018) 182-192.
[21] M. Ahrouch, J. M. Gatica, K. Draoui, et al, Lead removal from aqueous solution by means of integral natural clays honeycomb monoliths[J], J Hazard. Mater. 365 (2018) 519-530.
[22] J. M. Gatica, H. Vidal, Non-cordierite clay-based structured materials for environmental applications[J], J. Hazard. Mater. 181 (2010) 9-18.
[23] M. P. Yeste, J. M. Gatica, M. Ahrouch, et al, Clay honeycomb monoliths as low cost CO2 adsorbents[J], J. Taiwan Inst. Chem. E. 80 (2017) 415-423.
[24] J. Xu, W. B. Wang, A. Q. Wang, Dispersion of palygorskite in ethanol-water mixtures via high-pressure homogenization: Microstructure and colloidal properties[J], Powder Technol. 261 (2014) 98-104.
[25] S. Y. Zhou, A. L. Xue, Y. Zhang, et al, Preparation of a new ceramic microfiltration membrane with a separation layer of attapulgite nanofibers[J], Mater. Lett. 143 (2015) 27-30.
[26] J. Ji, S. Y. Zhou, C. Y. Lai, et al, PVDF/palygorskite composite ultrafiltration membranes with enhanced abrasion resistance and flux[J], J. Membr. Sci. 495 (2015) 91-100.
[27] J. J. Cai, S. Y. Zhou, Y. J. Zhao, et al, Enhanced hydrophilicity of a thermo-responsive PVDF/Palygorskite-g- PNIPAAM hybrid ultrafiltration membrane via surface segregation induced by temperature[J], RSC. Adv. 6 (2016) 62186-62192.
[28] D. Y. Wei, S. Y. Zhou, M. S. Li, et al, PVDF/palygorskite composite ultrafiltration membranes: Effects of nano-clay particles on membrane structure and properties[J], Appl. Clay Sci. 181 (2019) 105171.
[29] Y. S. Xu, L. L. Zhang, M. H. Yin, et al, Ultrathin g-C3N4 films supported on attapulgite nanofibers with enhanced photocatalytic performance[J], Appl. Surf. Sci. 440 (2018) 170-176.
[30] H. G. Zhang, X. Z. Li, H. Su, Sol-gel synthesis of up conversion perovskite/attapulgite hetero structures for photocatalytic fixation of nitrogen[J], J. Sol-Gel Sci. Techn. 92 (2019) 154-162.
[31] S. Y. Zhou, A. L. Xue, Y. Zhang, et al, Novel polyamidoamine dendrimer-functionalized palygorskite adsorbents with high adsorption capacity for Pb2+ and reactive dyes[J], Appl. Clay. Sci. 107 (2015) 220-229.
[32] Y. Lan, D. Chen. The effects of carbonization conditions on electrochemical performance of attapulgite-based anode material for lithium-ion batteries[J], J. Mater. Sci. Mater. Electron. 30 (2019) 10342–10351.
[33] X. F. Liang, N. Li, L.Z. He, et al, Inhibition of Cd accumulation in winter wheat (Triticum aestivum L.) grown in alkaline soil using mercapto-modified attapulgite[J], Sci. Total Enviro. 688 (2019) 818-826.
[34] W. D. Liang, R. Wang, C. J. Wang, et al, Facile preparation of attapulgite‐based aerogels with excellent flame retardancy and better thermal insulation properties[J], J. Appl. Polym. Sci. 136 (2019) 47849.
[35] F. Han, Z. X. Zhong, Y. Yang, et al, High gas permeability of SiC porous ceramics reinforced by mullite fibers[J], J. Eur. Ceram, 36 (2016) 3909-3916.
[36] Y. Yang, W. B. Xu, F. Zhang, et al, Preparation of highly stable porous SiC membrane supports with enhanced air purification performance by recycling NaA zeolite residue[J], J. Membr. Sci. 541 (2017) 500-509.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号