Position:Home >> Abstract

Fabricating defect-free organic solvent nanofiltration
membrane based on Dopa thin-walled microcapsules
Authors: Shi Fei, Li Hongying, Li Yifan
Units: School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001
KeyWords: Thin film composite membrane; Interface resistance; Thin-walled microcapsules; Organic solvent nanofiltration.
ClassificationCode:TQ 028.8
year,volume(issue):pagination: 2021,41(6):85-94

Abstract:
 Thin film composite membrane (TFCM) has a wide range of applications in the separation of low molecular weight systems due to its high separation performance. However, the near surface area of the support layer often suffers from a resistance concentration area during its preparation process, which reduces the separation performance of the membrane. Based on this, this work has prepared flexible two-dimensional Dopa thin-walled microcapsules, which was assembled on the support to prepare a film. And the flexibility of the microcapsules allows it to be assembled without defects. This method can reduce the additional resistance in the interface area of film by using mesoscopic organic constructor. The Dopa composite membrane exhibits good performance for organic solvent nanofiltration, and its methanol permeance reaches 440 L m-2 h-1 bar-1 with the retention of dye molecules which larger than 2 nm more than 95%. At the same time, the Dopa composite membrane shows good operational stability. This method paves a new way for the preparation of defect-free TFCM.

Funds:
国家自然科学基金(21878277,21506196)。

AuthorIntro:
时飞(1996-),男,山东省菏泽市人,硕士研究生,主要研究方向为膜分离技术,E-mail 1591448684@qq.com

Reference:
 [1]Ho B, Kamcev J, Robeson L, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. [J]. Science, 2017, 356: 1137.
[2]Lively R, Sholl D. From water to organics in membrane separations. [J]. Nat Mater, 2017, 16: 276-279.
[3]徐南平, 高从堦, 金万勤. 中国膜科学技术的创新进展. [J]. 中国工程科学. 2014, 16(12): 4-9. 
[4]赵冰, 王军, 田蒙奎. 我国膜分离技术及产业发展现状. [J]. 现代化工. 2020, 41(2): 6-10.
[5]周宗尧, 张朔, 王宁. 有机溶剂分离膜技术研究进展. [J] .膜科学与技术. 2018, 38(1): 104-113.
[6]Basma A, Christian D, Albuflasa P, et al. Pressure and osmotically driven membrane processes: A review of thebenefits and production of nano-enhanced membranes for desalination. [J]. Desalination, 2020, 479: 1143233.
[7]时飞, 李奕帆.混合基质膜在碳捕集领域的研究进展. [J]. 化工进展, 2020, 39(06): 2453-2462.
[8]Xie K, Fu Q, Qiao, G., et al. Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. [J]. J Membr Sci, 2019, 572: 38-60.
[9]Wong K, Goh P, Ismail A, et al. Thin film nanocomposite: the next generation selective membrane for CO2 removal. [J]. J Mater Chem A, 2016, 4(41): 15726-15748.
[10]Lau W, Ismail A, Misdan N, et al. A recent progress in thin film composite membrane: A review. [J]. Desalination, 2012, 287: 190-199.
[11]Dai Z, Ansaloni L, Deng L, et al. Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review. [J]. Green Energy Environ, 2016, 1(2): 102-128.
[12]Nguyen T, Nguyen B, Kim J, et al. Sustainable Fabrication of Organic Solvent Nanofiltration Membranes. [J]. Membranes, 2020, 11(1): 19.
[13]Zeng C, Lianga, Chunga T, et al. A review of polymeric composite membranes for gas separation and energy production. [J]. Prog Polym Sci, 2019, 97: 101141.
[14]Selyanchyn R, Ariyoshi M, Fujikawa S. Thickness Effect on CO2/N2 Separation in Double Layer Pebax-1657®/PDMS Membranes. [J]. Membranes, 2018, 8(4): 121.
[15]Peter J, Peinemann K-V. Multilayer composite membranes for gas separation based on crosslinked PTMSP gutter layer and partially crosslinked Matrimid® 5218 selective layer. [J]. J Mem Sci, 2009, 340: 62-72.
[16]Liu M, Xie K, Mitchell D, et al. Ultrathin Metal−Organic Framework Nanosheets as a Gutter Layer for Flexible Composite Gas Separation Membranes. [J]. ACS Nano, 2018, 12(11): 11591-11599
[17]Ying Y, Yang Z, Shi D, et al. Ultrathin covalent organic framework film as membrane gutter layer for high-permeance CO2 capture. [J]. J Mem Sci, 2021, 632: 119384.
[18]Brunettia A, Zitoa P, Borisov I, et al. CO2 separation from humidified ternary gas mixtures using a polydecylmethylsiloxane composite membrane. [J]. Fuel Process Technol, 2020, 210: 106550. 
[19]Yave W, Car1 A, Wind J, et al. Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO2 capture. [J]. Nanotechnology. 2010, 21: 395301.
[20]Chen H, Xiao Y, Chung T, et al. Multi-layer composite hollow fiber membranes derived from poly(ethylene glycol) (PEG) containing hybrid materials for CO2/N2separation. [J]. J Mem Sci, 2011, 381: 211–220.
[21]Ramon G, Wong Ma, Hoek E, et al. Transport through composite membrane, part1:Is there an optimal support membrane? [J]. J Mem Sci, 2012, 415–416: 298–305.
[22]Wijmansn J, Hao P. Influence of the porous support on diffusion in composite Membranes. [J]. J Mem Sci, 2015, 494: 78–85.
[23]Ghosha A, Hoekb E. Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes. [J]. J Mem Sci, 200, 336: 140–148. 
[24]Kim S, Wang H, Lee Y, et al. 2D Nanosheets and Their Composite Membranes for Water, Gas, and Ion Separation. [J]. Angew Chem Int Ed, 2019, 58: 17512 –17527.
[25]Anasori B, Lukatskaya M, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. [J]. Nat Rev Mater, 2017, 2: 16098.
[26]Ries L, Petit E, Michel T, et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. [J]. Nat Mater, 2019, 18: 1112-1117.
[27]Shi J, Yang C, Zhang S, et al. Polydopamine microcapsules with different wall structures prepared by a template-mediated method for enzyme immobilization. [J]. ACS Appl Mater Interfaces, 2013, 20, 5:9991-9997.
[28]Yang Q, Su Y, Chi C. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation.[J]. Nature Mater, 2017, 16: 1198–1202.
[29]Nie L, Goh K, Wang Y, et al. Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration. [J]. Sci Adv, 2020, 6:eaaz9184.
[30]Huang L, Chen J, Gao T, et al. Reduced Graphene Oxide Membranes for Ultrafast Organic Solvent Nanofiltration. [J]. Adv Mater, 2016, 28: 8669-8674.
[31]Wang J, Chen P, Shi B, et al. A Regularly Channeled Lamellar Membrane for Unparalleled Water and Organics Permeation. [J]. Angew Chem Int Ed, 2018, 57:6814-6818.
[32]Yang Q, Su Y, Chi C, et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. [J]. Nat Mater, 2017, 16: 1198-1203.
[33]Wang S, Dinesh M, Sutisna B, et al. 2D-dual-spacing channel membranes for high performance organic solvent nanofiltration. [J]. J Mater Chem A, 2019, 7: 11673–11682.
[34]Wang Q, Wu X, Chen J, et al. Ultrathin and stable organic-inorganic lamellar composite membrane for high-performance organic solvent nanofiltration. [J]. Chem Eng Sci, 2020, 228: 116002.
[35]Liang B, Wang H, Shi X, et al. Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration. [J]. Nat Chem, 2018, 10: 961-967.
[36]Yang C, Li S, Lv X, et al. Effectively regulating interfacial polymerization 1 process via in-situ constructed 2D COFs interlayer for fabricating organic solvent nanofiltration membranes. [J]. J Mem Sci, 2021, 637: 119618.
[37]Xu Y, Yu S, Peng G, et al. Novel crosslinked brominated polyphenylene oxide composite nanofiltration membranes with organic solvent permeability and swelling property. [J]. J Mem Sci, 2021, 620: 118784.
[38]Chen J, Zhang J, Wu X, et al. Accurately controlling the hierarchical nanostructure of polyamide membranes via electrostatic atomization-assisted interfacial polymerization. [J]. J Mater Chem A, 2020, 8: 9160–9167.
[39]Zhou Sheng, Zhao Y, Zheng J, et al. High-performance functionalized polymer of intrinsic microporosity (PIM) composite membranes with thin and stable interconnected layer for organic solvent nanofiltration. [J]. J Mem Sci, 2020, 595: 117505.
[40]Zhai Z, Jiang C, Zhao N, et al. Polyarylate membrane constructed from porous organic cage for high-performance organic solvent nanofiltration. [J]. J Mem Sci, 2020, 595: 117505.
[41]Gao Z, Feng Yi, Ma D, et al. Vapor-phase crosslinked mixed matrix membranes with UiO-66-NH2 for organic solvent nanofiltration. [J]. J Mem Sci, 2019, 574: 124-135.
[42]Dey K, Pal M, Rout K, et al. Selective Molecular Separation by Interfacially Crystallized Covalent Organic Framework Thin Films. [J]. J Am Chem Soc, 2017, 139, 13083−13091.
Liu J, Han G, Zhao D, et al. Self-standing and flexible covalent organic framework (COF) membranes for molecular separation. [J]. Sci Adv, 2020, 6: eabb1110

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号