Study on the effect of pore size of ceramic membrane on the separation performance of biological fermentation broth |
Authors: Ziyi Men, Yahan Ye, Haowei Yu, Juanjuan Wen, Xianfu Chen, Minghui Qiu, Yiqun Fan |
Units: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China |
KeyWords: anti-biofouling; pore size; ceramic membrane; critical operating flu |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2021,41(6):95-102 |
Abstract: |
Biological fouling generally exists in the application of membrane separation technology to fermentation broth treatment due to the characteristics of complex composition, high viscosity, and instability of the biological fermentation broth, which reduces the filtration performance of membranes and greatly limits the application of membrane technology in the biological fermentation industry. This article focuses on the relationship between the membrane pore size and the composition of the target material and liquid, and investigates the critical operating flux of ceramic membranes with different pore sizes of 5-100 nm in different solution systems, and evaluates the effect of the membrane pore size control mechanism on the improvement of the anti-biofouling performance during the application of ceramic membranes. The bovine serum albumin solution was selected as the reference system, and D-fructose and Escherichia coli culture medium were added to prepare different solution systems. Through filtration experiments, the stable permeation flux of ceramic membrane tubes under different pressures was determined. The results show that in the bovine serum albumin simulation system, the critical operating pressure of the 10 nm ceramic membrane tube is about 0.3 MPa, and the critical operating flux is about 210.26 L·m-2·h-1. The critical operating pressure increases as the pore size decreases. With the complexity of the solution system increases, the critical operating pressure of the ceramic membrane tube gradually decreases, while the ultrafiltration membrane with a small pore size of 10nm shows better anti-pollution performance in the complex solution system. |
Funds: |
国家重点研发项目(2021YFC2101200),国家自然科学基金(22078147,21921006),国家合成生物技术创新中心科研项目(TSBICIP-KJGG-002-16),江苏高等教育重点学科建设项目(PAPD),国家级大学生创新创业训练计划项目(2020DC0387) |
AuthorIntro: |
孟子怡(1996),女,江苏徐州人,硕士,研究方向为膜分离,E-mail:mengziyi96@163.com |
Reference: |
[1]Lin X Q, Li R J, Wen Q S, et al. Experimental and modeling studies on the sorption breakthrough behaviors of butanol from aqueous solution in a fixed-bed of KA-I resin[J]. Biotechnology and Bioprocess Engineering, 2013, 18(2): 223-233. [2] Han M, Jiang K, Jiao P, et al. Bio-butanol sorption performance on novel porous-carbon adsorbents from corncob prepared via hydrothermal carbonization and post-pyrolysis method[J]. Scientific Reports, 2017, 7. (1):11753. [3] Lin X, Wu J, Fan J, et al. Adsorption of butanol from aqueous solution onto a new type of macroporous adsorption resin: Studies of adsorption isotherms and kinetics simulation[J]. Journal of Chemical Technology and Biotechnology, 2012, 87(7): 924-931. [4] Li Y B, Wee L H, Martens J A, et al. ZIF-71 as a potential filler to prepare pervaporation membranes for bio-alcohol recovery[J]. Journal of Materials Chemistry A, 2014, 2(26): 10034-10040. [5] Cai F F, Zhu W, Ibrahim J J, et al. Liquid extraction of polyhydric alcohols from water using A336 SCN as a solvent[J]. Journal of Chemical Thermodynamics, 2015, 89: 35-40. [6] Marchand A P, Satyanarayana N, Mckenney R L, et al. Syntheses of 1,4-butanediamine-1,1,4,4-D4, 1,4-butanediamine-2,2,3,3-D4, and their respective bis(ammonium nitrate) salts[J]. Journal of Labelled Compounds & Radiopharmaceuticals, 1988, 25(9): 971-976. [7] Guan Y, Hu S, Wang Y, et al. Separating isopropanol from its diluted solutions via a process of integrating gas stripping and vapor permeation[J]. Rsc Advances, 2015, 5(31): 24031-24037. [8] Jiao P, Wu J, Zhou J, et al. Mathematical modeling of the competitive sorption dynamics of acetone-butanol-ethanol on KA-I resin in a fixed-bed column[J]. Adsorption-Journal of the International Adsorption Society, 2015, 21(3): 165-176. [9] 毕艺成, 陆宏艳, 王浩, 等. 两步超滤膜法分离提取发酵液中聚苹果酸[J]. 膜科学与技术, 2015, 35(01): 97-102. [10] 吴昊, 姜岷, 韦萍, 等. 纳滤选择性分离丁二酸模拟发酵液 [J]. 膜科学与技术, 2011, 31(05): 46-51. [11] Kang G D, Cao Y M. Application and modification of poly(vinylidene fluoride) (PVDF) membranes - A review[J]. Journal of Membrane Science, 2014, 463: 145-165. [12] Kim L H, Shin M S, Kim S J, et al. Potential effects of damaged Pseudomonas aeruginosa PAO1 cells on development of reverse osmosis membrane biofouling[J]. Journal of Membrane Science, 2015, 477: 86-92. [13] Kang G D, Cao Y M. Development of antifouling reverse osmosis membranes for water treatment: A review[J]. Water Research, 2012, 46(3): 584-600. [14] 李博, 张连军, 郭立玮, 等. 基于溶液环境调节理论的黄连解毒汤陶瓷膜微滤过程的预处理研究[J]. 中国中药杂志, 2014, 39(01): 59-64. [15] 徐南平, 李卫星, 赵宜江, 等. 面向过程的陶瓷膜材料设计理论与方法(Ⅰ)膜性能与微观结构关系模型的建立[J]. 化工学报, 2003, (09): 1284-1289. [16] 熊军, 黄肖容, 隋贤栋. 陶瓷膜的生物污染控制及其抑菌改性[J]. 陶瓷学报, 2008, (02): 199-202. [17] Pollice A, Brookes A, Jefferson B, et al. Sub-critical flux fouling in membrane bioreactons - a review of recent literature[J]. Desalination, 2005, 174(3): 221-230. [18] Meireles M, Aimar P, Sanchez V. Effects of protein fouling on the apparent pore-size distribution of sieving membranes[J]. Journal of Membrane Science, 1991, 56(1): 13-28. [19] Marshall A D, Munro P A, Tragardh G. The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity - a literature-review [J]. Desalination, 1993, 91(1): 65-108. [20] Jin L, Ong S L, Ng H Y. Comparison of fouling characteristics in different pore-sized submerged ceramic membrane bioreactors[J]. Water Research, 2010, 44(20): 5907-5918. [21] Zou D, Xu J, Chen X, et al. A novel thermal spraying technique to fabricate fly ash/alumina composite membranes for oily emulsion and spent tin wastewater treatment[J]. Separation and Purification Technology, 2019, 219: 127-136. [22] Zou D, Qiu M, Chen X, et al. One-step preparation of high-performance bilayer alpha-alumina ultrafiltration membranes via co-sintering process[J]. Journal of Membrane Science, 2017, 524: 141-150. [23] Field R W, Wu D, Howell J A, et al. Critical flux concept for microfiltration fouling[J]. Journal of Membrane Science, 1995, 100(3): 259-272. [24] 刘冲, 吕晓龙, 武春瑞, 等. 关于超滤膜临界运行通量的探讨[J]. 膜科学与技术, 2017, 37(01): 23-26+43. [25] Wu D X, Howell J A, Field R W. Critical flux measurement for model colloids[J]. Journal of Membrane Science, 1999, 152(1): 89-98. [26] 曹雁平, 刘玉德. 食品调色技术[M]. 北京: 化学工业出版社, 2003, 69-70. [27] 吴东儒. 糖类的生物化学[M]. 北京: 高等教育出版社, 2006, 86-92. [28] Metsmuuronen S, Howell J, Nystrm M. Critical flux in ultrafiltration of myoglobin and baker's yeast[J]. Journal of Membrane Science, 2002, 196(1): 13-25. [29] Gesan-Guiziou G, Wakeman R J, Daufin G. Stability of latex crossflow filtration: cake properties and critical conditions of deposition[J]. Chemical Engineering Journal, 2002, 85(1): 27-34. [30] Madaeni S S, Fane A G, Wiley D E. Factors influencing critical flux in membrane filtration of activated sludge[J]. Journal of Chemical Technology and Biotechnology, 1999, 74(6): 539-543. [31] 吴志超, 杨德立. 平板膜生物反应器中临界通量问题研究[J]. 环境污染与防治, 2005, 06(06): 423-426. [32] 姚金苗, 王湛, 梁艳莉, 等. 超、微滤过程中临界通量的研究进展[J]. 膜科学与技术, 2008, 02(02): 69-72. [33] 贺延龄, 陈爱侠. 环境微生物学[M]. 北京: 中国轻工业出版社, 2001, 10-11. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号