Preparation and properties of sulfonated poly(ether ether ketone) blended poly(aryl ether benzimidazole) proton exchange membrane |
Authors: SONG Jierui, XIAO Yiming, ZHANG Lei, XIANG Jun, TANG Na, CHENG Penggao, ZHANG Jianping, WANG Songbo, DU Wei |
Units: College of Chemical Engineering and Materials,Tianjin University of Science & Technology Tianjin 300457,China |
KeyWords: Polybenzimidazole; Sulfonated poly(ether ether ketone); Proton exchange membrane; Proton conductivity; Phosphoric acid loss ratio |
ClassificationCode:O631 |
year,volume(issue):pagination: 2022,42(1):1-9 |
Abstract: |
In this work, we aimed to solve the problem of phosphoric acid leaching and improve the proton conductivity and mechanical strength of phosphoric acid polybenzimidazole (PA-PBI) proton exchange membrane. The phosphoric acid doped proton exchange membranes were prepared by casting method via co-blending high sulfonation degree branched-chain sulfonated polyether ether ketone (bSPEEK) and poly(aryl ether benzimidazole) (OPBI). The volume swelling ratio of the blend membrane decreased by 26.5%, and the mechanical strength increased by 83.7% under the optimal content of bSPEEK (30% w/w). And the proton conductivity in high temperature range (160 oC/0% RH) and low temperature range (80 oC/98% RH) increased by 43.8 % and 29.1%, respectively. The phosphoric acid loss in low temperature range decreased by 48%. In conclusion, the mechanical strength and proton conductivity of the co-blend membrane were improved as well as effectively inhibiting the loss of phosphoric acid. |
Funds: |
中国自然科学基金(U20A20148);天津市自然科学基金(18JCZDJC37200);天津市科技计划项目(18YFZCSF00330);天津市教委创新研究团队(TD13-5008);长江学者与高校创新研究团队(IRT-17R81)。 |
AuthorIntro: |
宋洁瑞(1995-),女,甘肃兰州人,研究生,研究方向为燃料电池关键材料 |
Reference: |
[1]王保国. 新能源领域的质子交换膜研究与应用进展[J]. 膜科学与技术, 2010, 30(1): 1-8. [2]Chandan A, Hattenberger M, El-Kharouf A, et al. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review[J]. J Power Sources, 2013, 231: 264-278. [3]Rosli R E, Sulong A B, Daud W R W, et al. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system[J]. Int J Hydrogen Energy, 2017, 42(14): 9293-9314. [4]Zhang X, Liu Q, Xia L, et al. Poly(2,5-benzimidazole)/sulfonated sepiolite composite membranes with low phosphoric acid doping levels for PEMFC applications in a wide temperature range[J]. J Membrane Sci, 2019, 574: 282-298. [5]Mohsin M, Raza R, Mohsin-Ul-Mulk M, et al. Electrochemical characterization of polymer electrolyte membrane fuel cells and polarization curve analysis[J]. Int J Hydrogen Energy, 2020, 45(45): 24093-24107. [6]Oh H S, Cho Y, Lee W H, et al. Modification of electrodes using Al2O3 to reduce phosphoric acid loss and increase the performance of high-temperature proton exchange membrane fuel cells[J]. J Mater Chem A, 2013, 1(7). [7]Aili D, Zhang J, Dalsgaard Jakobsen M T, et al. Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200 °C[J]. J Mater Chem A, 2016, 4(11): 4019-4024. [8]Lee K S, Spendelow J S, Choe Y-K, et al. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs[J]. Nat Energy, 2016, 1(9): 16120. [9]Tang H, Geng K, Hu Y, et al. Synthesis and properties of phosphonated polysulfones for durable high-temperature proton exchange membranes fuel cell[J]. J Membrane Sci, 2020, 605. [10]Giffin G A, Galbiati S, Walter M, et al. Interplay between structure and properties in acid-base blend PBI-based membranes for HT-PEM fuel cells[J]. J Membrane Sci, 2017, 535: 122-131. [11]郭宇星 沈春晖, 高山俊, 等. 侧链磺化聚醚醚酮质子交换膜的制备及性能[J]. 膜科学与技术, 2020, 40(4): 34-40. [12]Pang J, Zhang H, Li X, et al. Low Water Swelling and High Proton Conducting Sulfonated Poly(arylene ether) with Pendant Sulfoalkyl Groups for Proton Exchange Membranes[J]. Macromol Rapid Comm, 2007, 28(24): 2332-2338. [13]Huang B, Wang X, Fang H, et al. Mechanically strong sulfonated polybenzimidazole PEMs with enhanced proton conductivity[J]. Mater Lett, 2019, 234: 354-356. [14]Akay R G, Ata K C, Kad?o?lu T, et al. Evaluation of SPEEK/PBI blend membranes for possible direct borohydride fuel cell (DBFC) application[J]. Int J Hydrogen Energy, 2018, 43(40): 18702-18711. [15]李猛猛, 董杰, 甘锋, 等. 含苯并双咪唑高阻燃共聚聚酰亚胺薄膜的制备及其性能研究[J]. 合成纤维工业, 2019, 42(3): 24. [16]Chiang Y C, Tsai D-S, Liu Y-H, et al. PEM fuel cells of poly(2,5-benzimidazole) ABPBI membrane electrolytes doped with phosphoric acid and metal phosphates[J]. Mater Chem Phys, 2018, 216: 485-490. [17]Hooshyari K, Rezania H, Vatanpour V, et al. High temperature membranes based on PBI/sulfonated polyimide and doped-perovskite nanoparticles for PEM fuel cells[J]. J Membrane Sci, 2020, 612. [18]Yang J, Li X, Shi C, et al. Fabrication of PBI/SPOSS hybrid high-temperature proton exchange membranes using SPAEK as compatibilizer[J]. J Membrane Sci, 2021, 620. [19]Zhou L, Zhu J, Lin M, et al. Tetra-alkylsulfonate functionalized poly(aryl ether) membranes with nanosized hydrophilic channels for efficient proton conduction[J]. J Energy Chem, 2020, 40: 57-64. [20]Fukuhara L, Kado N, Kosugi K, et al. Preparation of polymer electrolyte membrane with nanomatrix channel through sulfonation of natural rubber grafted with polystyrene[J]. Solid State Ionics, 2014, 268: 191-197. [21]Hazarika M, Jana T. Novel proton exchange membrane for fuel cell developed from blends of polybenzimidazole with fluorinated polymer[J]. Eur Polym J, 2013, 49(6): 1564-1576. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号