Position:Home >> Abstract

Superhydrophobic modification of the surface of porous SiC ceramics and its performance towards oil-solid separation
Authors: SU Hang, XIE Zixuan, QI Hong
Units: Membrane Science and Technology Research Center, Nanjing Tech University, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 210009, China
KeyWords: porous ceramics; SiC; superhydrophobicity; ZnO; oil-solid separation
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2022,42(2):8-15

Abstract:
 In this paper, using zinc acetate dihydrate and ammonia as raw materials, ZnO nanoflower (NF) structure was fabricated on the surface of porous SiC ceramics with an average pore size of 250 nm by chemical bath deposition, and then grafted with n-octyltriethoxysilane. Effects of Zn2+ concentration, reaction temperature and reaction time on the morphology and superhydrophobic properties of porous SiC ceramic surface were investigated. The wettability and oil-solid separation performance of the blank sample and superhydrophobic porous SiC ceramics were investigated, respectively. Results showed that the optimal conditions for ZnO NFs deposited on porous SiC ceramic surface were as follows: Zn2+ concentration of 75 mmol/L, reaction temperature of 96 ℃, reaction time of 3 h. In this case, the surface of porous ceramics grafted with silane provided with the best superhydrophobic properties. The surface water contact angle (WCA) and rolling contact angle were 173°±2.5°and 2.5°±1°, respectively. In the experiment of oil-solid separation, superhydrophobic porous SiC ceramics exhibited excellent retention towards solid carbon. The steady-state flux was 498.3 L/(m2·h)(measured at a transmembrane pressure of 0.25 MPa), which was 53.6 % higher in comparision with the blank sample.

Funds:
国家自然科学基金项目(21490581);中国石油化工股份有限公司资助项目(317008-6)

AuthorIntro:
苏航(1996-),男,江苏南京人,硕士生,主要从事疏水陶瓷膜的制备及其在油水分离中的应用,E-mail:931170477@qq.com

Reference:
 [1] 李秀秀, 魏逸彬, 谢子萱,等. Al2O3和SiC微滤膜的疏水改性及其油固分离性能研究[J]. 化工学报, 2019, 70(07): 334-344.
[2] Song H M, Chen C, Shui X X, et al. Asymmetric Janus membranes based on in situ mussel-inspired chemistry for efficient oil/water separation[J]. J Membr Sci, 2019, 573: 126-134.
[3] Li H, Zhou C P, LI C S, et al. Superhydrophilic fluorinated polyarylate membranes via in situ photocopolymerization and microphase separation for efficient separation of oil-in-water emulsion[J]. RSC Adv, 2019, 9(2): 958-962.
[4] 刘君腾, 卿伟华, 任钟旗, 等. 超疏水聚四氟乙烯丝网用于原油脱水的研究[J]. 高校化学工程学报, 2012, 26(4): 563-568.
[5] Wei Y B, QI H, Gong X, et al. Specially wettable membranes for oil-water separation[J]. Adv Mater Interfaces, 2018,5(23):1800576.
[6] Su B, Tian Y, Jiang L. Bioinspired interfaces with superwettability: from materials to chemistry[J]. J Am Chem Soc, 2016, 138(6): 1727-1748.
[7] Ahmad N A, Leo C P, Ahmad A L. Superhydrophobic alumina membrane by steam impingement: minimum resistance in microfiltration[J]. Separ Purif Technol, 2013,107: 187-194.
[8] Su C, Xu Y, Zhang W, et al. Porous ceramic membrane with superhydrophobic and superoleophilic surface for reclaiming oil from oily water[J]. Appl Surf Sci, 2012,258: 2319-2323.
[9] Fatima U, Zafar M, Khan A U, et al. Facile synthesis of transparent glass surfaces via hydrothermal route for superhydrophobic performance[J]. J Nanosci Nanotechnol, 2021, 21(9):4824-4829. 
[10] Liu M, Wang S, Jiang L. Nature-inspired superwettability systems[J]. Nat Rev Mater, 2017, 2(7): 17036.
[11] Feng X Q, Gao X, Wu Z, et al. Superior water repellency of water strider legs with hierarchical structures: experiments and analysis[J]. Langmuir, 2007, 23(9): 4892.
[12] Kim H, Lee C, Kwon J, et al. Fabrication of transparent superhydrophobic surface from ZnO nanorods[J]. J Nanosci Nanotechnol, 2021, 21(3): 1772-1778.
[13] Li H, Lin X, Wang H. Fabrication and evaluation of nano-TiO2 superhydrophobic coating on asphalt pavement[J]. Materials, 2021, 14(1):211.
[14] Kaviyarasu K, Mola G T, Oseni S O, et al. ZnO doped single wall carbon nanotube as an active medium for gas sensor and solar absorber[J]. J Mat Sci, 2019, 30(1): 147–158.
[15] Fan T, Qian Q H, Hou Z H, et al. Preparation of smart and reversible wettability cellulose fabrics for oil/water separation using a facile and economical method[J]. Carbohyd Polym, 2018 ,200: 63-71.
[16] Gao N W, Zhou Z, Wei J. Superhydrophobic ceramic membranes with nanostructured rough coating for efficient water-in-oil emulsions separation[J]. Chem Lett, 2018, 47(12):1472-1474.
[17] Wei Y B, Xie Z X, QI H. Superhydrophobic-superoleophilic SiC membranes with micro-nano hierarchical structures for high-efficient water-in-oil emulsion separation[J]. J Membr Sci, 2020, 601: 117842.
[18] Demianets, L. Mechanism of zinc oxide single crystal growth under hydrothermal conditions[J]. Ann Chim-Sci Mat, 2001, 26(1): 193-198.
[19] Demianets L N, Kostomarov D V, Kuz-mina I P. Chemistry and kinetics of ZnO growth from alkaline hydrothermal solutions[J]. Inorg Mat, 2002, 38(2): 124-131.
[20] Joo j, Chow B Y, Prakash M, et al. Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis[J]. Nat Mat, 2011, 10(8): 596-601.
[21] Zhang Y Z, Wang X Y, Wang C H, et al. Facile preparation of flexible and stable superhydrophobic non-woven fabric for efficient oily wastewater treatment[J]. Surf Coat Technol, 357 (2019): 526-534.
[22] Raha J, Haldar N, Ghosh C K. Intense orange emission from hydrothermally synthesized ZnO flower-like structure: effect of charge carrier-LO phonon interaction on emission characteristics[J]. Appl Phys A: Mater. Sci. Process, 2021, 127(3):163. 
[23] Sudeepthi A, Yeo L, Sen A K. Cassie-Wenzel wetting transition on nanostructured superhydrophobic surfaces induced by surface acoustic waves[J]. Appl Phys Lett, 2020, 116(9):093704.
[24] Rohrs C, Azimi A, He P. Wetting on micropatterned surfaces: partial penetration in the Cassie state and Wenzel deviation theoretically explained[J]. Langmuir, 2019, 35(47): 15421-15430.
[25] Patankar N A. On the modeling of hydrophobic contact angles on rough surfaces[J]. Langmuir, 2003, 19(4): 1249-1253.
[26] Guan K. Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films[J]. Surf Coat Technol, 2005, 191(2-3): 155-160.
[27] Wang T, Yun Y, Wang M, et al. Superhydrophobic ceramic hollow fiber membrane planted by ZnO nanorod-array for high-salinity water desalination[J]. J Taiwan Inst Chem Eng, 2019, 105: 17-27.
[28] Chung J, Lee S, Yong H, et al. Direct fabrication of superhydrophobic ceramic surfaces with ZnO nanowires [J]. J Korean Phys Soc, 2016, 68(3): 452-455.
[29] 徐南平, 邢卫红, 赵宜江. 无机膜分离技术与应用[M]// 北京: 化学工业出版社, 2003. 129-130.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号