Position:Home >> Abstract

Preparation of high electrolyte uptake PBI/PEI lithium ion battery separator by vapor induced phase separation method
Authors: Chengming Lu, Lihua Wang1, Jian Chu, Xinhai Yu
Units: 1.Key laboratory of Green Printing, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190;2. Department of Applied Chemistry, Donghua University, Shanghai, 201620
KeyWords: VIPS method, polybenzimidazole, polyetherimide, lithium ion battery, separator
ClassificationCode:TM911
year,volume(issue):pagination: 2022,42(3):23-31

Abstract:
 A kind of high electrolyte uptake PBI/ PEI (Short Name: PBEI) lithium ion battery separator was prepared by blending with polybenzimidazole(PBI) and polyetherimide (PEI) via vapor induced phase separation (VIPS) method. The internal microstructure of PBEI membrane presents a three-dimensional network structure. When the content rate of PBI reaches 40% (PBEI-4), the pore structure is the most loose and the porosity is the highest. Besides, due to the existence of ether bond, amide bond and imidazole polar groups, the electrolyte uptake of PBEI-4 separator is the highest, up to 391.84%. PBEI-4 membrane has good thermal stability and almost does not shrink at 160℃.The ionic conductivity of PBEI-4 membrane is 1.943 mS cm-1, much higher than that of PP (Polypropylene) membrane and PEI membrane. Under the same current density, the discharge capacity of PBEI-4 membrane is also higher than that of PP and PEI membrane. After 50 cycles of 5C current density, the capacity retention rate is 95.2%, which shows excellent cycle performance.

Funds:

AuthorIntro:
鲁成明(1996-),男,浙江绍兴人,硕士研究生,主要从事锂离子电池隔膜的制备

Reference:
 1.Stern P C, Sovacool B K, Dietz T. Towards a science of climate and energy choices[J]. Nature Climate Change, 2016, 6: 547-555
2.Wong-Parodi G, Krishnamurti T, Davis A, et al. A decision science approach for integrating social science in climate and energy solutions[J].Nature Climate Change, 2016, 6: 563-569
3.Luo Z J, Fan D D, Liu X L, et al. High-performance silicon carbon composite anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2009, 189:16-21
4.肖伟,巩亚群,王红,等. 锂离子电池隔膜技术进展[J].储能科学与技术, 2016, 5:188-196
5.Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X W. A review of recent developments in membrane separators for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7:3857-3886
6.Nakagawa H, Izuchi S, Kuwana K, et al. Liquid and Polymer Gel Electrolytes for Lithium Batteries Composed of Room-Temperature Molten Salt Doped by Lithium Salt[J]. Journal of the Electrochemical Society, 2003, 150: A695-A700
7.Zhang H P,  Zhang P, Li Z H, et al. A novel sandwiched membrane as polymer electrolyte for lithium-ion battery[J]. Electrochemistry Communications, 2007, 9:1700-1703
8.Li D, Shi D Q, Xia Y G, et al. A low-cost shutdown sandwich-like composite membrane with superior thermo-stability for lithium-ion battery[J]. Acs Applied Materials & Interfaces. 2017, 9: 8742-8750
9.Liang, N P, Fang J H, Guo X X. A simple approach for preparation of porous polybenzimidazole membranes as a promising separator for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5:15087-15095
10.Li D, Shi D Q, Xia Y G, Qiao L, Li X F, Zhang H M. Acs Applied Materials & Interfaces, 2017, 9:742-8750
11.Li D, Shi D Q, Yuan Z Z, et al. A low-cost shutdown sandwich-like composite membrane with superior thermo-stability for lithium-ion battery[J]. Journal of Membrane Science, 2017,542:1-7
12.Sun G H, Guo J C, Niu H Q, Chen N J, Zhang M Y, Tian G F, Qi S L, Wu D Z, RSC Advances, 2019, 9:40084-40091
13.Sun G, Kong L, Liu B.  The design of a multifunctional separator regulating the lithium-ion flux for advanced lithium-ion batteries[J]. Journal of Membrane Science, 2019, 582:132-139
14.Sun G H, Liu B X, Niu H Q, et al. Ultrahigh-strength, nonflammable and high-wettability separators based on novel polyimide-core@polybenzimidazole-sheath nanofibers for advanced and safe lithium-ion batteries[J]. Journal of Membrane Science, 2019, 595:20-24
15.Li D, Zhang H M, Li X F. Porous polyetherimide membranes with tunable morphology for lithium-ion battery[J].Journal of Membrane Science, 2018, 565:42-49 
16.Chae J, Park S, Kim D Y, et al. Reinforced PEI/PVdF Multicore-Shell Structure Composite Membranes by Phase Prediction on a Ternary Solution[J].  Polymers, 2018, 10(4):436
17.l'Abee R, DaRosa F, Armstrong M J, et al.. Journal of Power Sources, 2017, 345:202-211
18.Oh Y S, Jung G Y, Kim J H, et al. Janus-Faced, Dual-Conductive/Chemically Active Battery Separator Membranes[J]. Advanced Functional Materials, 2016, 26:7074-7083
19.Zhai Y Y, Xiao K, Yu J Y, et al. Fabrication of hierarchical structured SiO2/polyetherimide-polyurethane nanofibrous separators with high performance for lithium-ion batteries[J]. Electrochimica Acta, 2015, 154:219-226
20.Zhai Y Y, Xiao K, Yu J Y, et al. Fabrication of hierarchical structured SiO2/polyetherimide-polyurethane nanofibrous separators with high performance for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3:10551-10558
21.Cai H P, Tong X, Chen K, et al. Electrospun Polyethylene Terephthalate Nonwoven Reinforced Polypropylene Separator: Scalable Synthesis and Its Lithium-ion Battery Performance[J]. Polymers 2018, 10(6):574
22.Zhu C H, Nagaishi T, Shi J, et al. Enhanced Wettability and Thermal Stability of a Novel Polyethylene Terephthalate-Based Poly(Vinylidene Fluoride) Nanofiber Hybrid Membrane for the Separator of Lithium-Ion Batteries[J]. Acs Applied Materials & Interfaces, 2017, 9:26400-26406
23.Li W B, Li X Z, Yuan A B, et al. Al2O3/poly(ethylene terephthalate) composite separator for high-safety lithium-ion batteries[J]. Ionics, 2016, 22:2143-2149
24.Qin S N, Wang Y Q, Wu X,et al. Nylon-Based Composite Gel Membrane Fabricated via Sequential Layer-By-Layer Electrospinning for Rechargeable Lithium Batteries with High Performance[J]. Polymers, 2020, 12(7):1572
25.Cho H, Kim K, Park C M, et al. In situ fabrication of nanohybrid carbon/polyamide film providing robust binding and conductive network in silicon anode for lithium-ion battery[J]. Journal of Power Sources, 2019, 410:25-30
26.Chen J H, Liu Q Z, Wang B, et al. Hierarchical Polyamide 6 (PA6) Nanofibrous Membrane with Desired Thickness as Separator for High-Performance Lithium-Ion Batteries[J]. Journal of the Electrochemical Society, 2017, 164: A1526-A1533
27.Li X, Chen S L, Xia Z L,et al. High performance of boehmite/polyacrylonitrile composite nanofiber membrane for polymer lithium-ion battery[J]. RSC Advances, 2020, 10:27492-27501
28. Gao Y, Sang X, Chen Y, et al. Polydopamine modification electrospun polyacrylonitrile fibrous membrane with decreased pore size and dendrite mitigation for lithium-ion battery[J]. Journal of Materials Science, 2020, 55:3549-3560
29.Kuo P L, Wu C A, Lu C Y. High performance of transferring lithium-ion for polyacrylonitrile-interpenetrating crosslinked polyoxyethylene network as gel polymer electrolyte[J]. Acs Appl Mater Interfaces, 2014, 6:3156-3162.
30.Kuo P L, Hsu C H, Chien L H. High Thermal and Electrochemical Stability of SiO2 Nanoparticle Hybird-Polyether Cross-Linked Membrane for Safety Reinforced Lithium-Ion Batteries[J]. RSC Advances, 2016, 6:18089-18095
31.He L Y, Qiu T, Xie C J, et al. A phase separation method toward PPTA–polypropylene nanocomposite separator for safe lithium-ion batteries[J].  Journal of Applied Polymer Science, 2017, 135(39):46697
32.Cai H P, Yang G P, Meng Z H, et al. Water-Dispersed Poly(p-Phenylene Terephthamide) Boosting Nano-Al2O3-Coated Polyethylene Separator with Enhanced Thermal Stability and Ion Diffusion for Lithium-Ion Batteries[J]. Polymers, 2019, 11(8):1362
33.Zuo P J, Lou S F, Pan Q R, et al. Electrospun PMIA and PVDF-HFP composite nanofibrous membranes with two different structures for improved lithium-ion battery separators[J]. Chemical Engineering Journal, 2018(341):37-46
34.Liu Z H, Kong Q S, Zhang C J, et al.A flexible Cellulose/Methylcellulose gel polymer electrolyte endowing superior Li+ conducting property for lithium-ion battery[J].Acs Applied Materials & Interfaces, 2013, 5(1):128-134
35.Ajkidkarn P, Manuspiya H. Novel bacterial cellulose nanocrystals/polyether block amide microporous membranes as separators for lithium-ion batteries[J].
International Journal of Biological Macromolecules, 2020, 164:3580-3588
36.Zhang J J, Liu Z H, Kong Q S, et al. Renewable and Superior Thermal-Resistant Cellulose-Based Composite Nonwoven as Lithium-Ion Battery Separator[J]. Acs Applied Materials & Interfaces, 2013, 5(1):128-134
37.Li D, Zhang H M, Li X F. Porous polyetherimide membranes with tunable morphology for lithium-ion battery[J]. Journal of Membrane Science, 2018, 565:42-49
38.Sun G H, Kong L S, Liu B X, et al. Ultrahigh-strength, nonflammable and high-wettability separators based on novel polyimide-core@polybenzimidazole-sheath nanofibers for advanced and safe lithium-ion batteries[J]. Journal of Membrane Science, 2019, 582:132-139
39.Li J, Daniel C, Wood D. Materials Processing for Lithium-Ion Batteries[J]. Journal of Power Sources, 2011, 196(5):2452-2460
40.冯凯敏,王丽华,韩旭彤. 水蒸汽诱导相分离法制备聚苯并咪唑多孔膜,膜科学与技术,2018,38,51-60
41.Le Mong A, Kim D. Tailor-made pore-controlled poly (arylene ether ketone) membranes as a lithium-ion battery separator[J]. Journal of Power Sources, 2016, 304:301-310
42.Liang J, Chen Q Y, Liao X B, et al. A Nano‐shield Design for Separators to Resist Dendrite Formation in Lithium‐Metal Batteries[J]. Angewandte Chemie International Edition, 2020, 59(16):6561-6566

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号