Preparation and Properties of Crosslinked Polysulfone Anion Exchange Membrane |
Authors: QIAO Zongwen, Feng Bo, ZHAO Benbo |
Units: 1 Department of Chemical Engineering , Shaanxi Institute of Technology, Xian 710300, China; 2 Department of chemical engineering, North University of China, Taiyuan 030051, China |
KeyWords: Polysulfone; Quaternary ammonium; Crosslinked structure; Dimensional stability; Alkali resistance |
ClassificationCode:O631 |
year,volume(issue):pagination: 2022,42(3):78-83 |
Abstract: |
With polysulfone(PSF), ethyl chloride isocyanate and 4 - diethyl amino phenol reagent, a kind of quaternary ammonium of polysulfone (PSF-QN) membrane material with a long flexible side chain was prepared based on one pot methods by two step. And then a kind of crosslinking type polysulfone anion exchange membrane (CPSF-BN) was constructed by crosslinking reaction with 1, 4 – dibromobutane as small molecule reagent. After characterizing the chemical structure of the modified polymer by infrared spectral. Water uptaking(WU), dimensional stability(SW) and alkali resistance of anion exchange membrane were studied. The experiment result was found that the phase separation structure was strengthen by locating the hydrophilic region far away from hydrophobic regions. At the same time, a network structure is formed by chemical crosslinking. The combination of these two factors solves the problem of poor dimensional stability and alkali resistance of anion exchange membrane under high water absorption. With the increase of temperature, the water absorption rate (WU), water absorption swelling rate (SW) and ion conductivity of CPSF-BN AEM increase. The ion conductivity of CPS-HN-3 AEM with IEC 1.53mmo/g at room temperature and 85℃ are 0.035 S/cm and 0.083S/cm. The swelling ratio are only 14.1% and 25.8%. The AEM maintained good dimensional stability and alkali resistance due to the retention of conductivity reached 83.2% after soaking in strong alkali for 30 days. It is expected to be used in practical applications of fuel cells. |
Funds: |
陕西省自然科学基金项目(2019JQ-927),陕西省教育厅自然科学专项(18JK0069和陕西国防学院科研项目(Gfy21-01) |
AuthorIntro: |
乔宗文(1987-),男,江苏连云港人,博士研究生,讲师,研究方向:功能高分子的合成及性能研究 |
Reference: |
[1] Rossi R, Wang X, Logan B E. High performance flow through microbial fuel cells with anion exchange membrane[J]. Journal of Power Sources, 2020, 475: 228633. [2] 宁丹, 胡朝霞, 陈荣, 等. 序列式含芴季铵化聚芳醚砜阴离子交换膜的制备及交联改性[J]. 高分子学报, 2017(05): 842-850. [3] Kumar M A, Eun S Y,Boram J,et al. Partially crosslinked comb-shaped PPO-based anion exchange membrane grafted with long alkyl chains: Synthesis, characterization and microbial fuel cell performance[J]. International Journal of Hydrogen Energy, 2020, 45(51):27346-27358 [4] 李紫芹. 提高阴离子传导性的膜材料的结构设计与性能研究[D].中国科学技术大学, 2021. [5] 汪丽梅,窦立岩,辛鹏.交联型季铵聚芳醚砜阴离子交换膜的制备[J].高等学校化学学报, 2016, 37(07): 1408-1414. [6] Yang Q, Li L, Lin C X, et al. Hyperbranched poly(arylene ether ketone) anion exchange membranes for fuel cells[J]. Journal of Membrane Science, 2018, 560: 77~86. [7] Li S, Zhang H B, Wang K Q, et al. Micro-block versus random quaternized poly(arylene ether sulfones) with highly dense quaternization units for anion exchange membranes[J]. Polymer Chemistry, 2020, 11(13): 2399~2407. [8] Zhu Y, Chen C R, Zuo D Y, et al. Hybrid anion-exchange membranes derived from quaternized polysulfone and functionalized titanium dioxide[J]. Electrochim. Acta, 2015, 17 : 128~136. [9] Zhang X, Li ZW, Chen XL, et al. Side Chain Engineering of Sulfonated Poly(arylene ether)s for Proton Exchange Membranes. Chinese Journal of Polymer Science. 2020, 38: 185-193. [10] Yang WH, Xu P, Li XZ, et al. Mechanically robust semi-interpenetrating polymer network via thiol-ene chemistry with enhanced conductivity for anion exchange membranes. International Journal of Hydrogen Energy. 2021, 46:10377-10388. [11] Liu D, Lin LM, Xie YJ, et al. Anion exchange membrane based on poly(arylene ether ketone) containing long alkyl densely quaternized carbazole derivative pendant. Journal of Membrane Science. 2021, 623: 119079. [12] Wang Y, Zhang D Y, Liang X, et al. Improving fuel cell performance of an anion exchange membrane by terminal pending bis-cations on a flexible side chain[J]. Journal of Membrane Science, 2020, 595: 117483. [13] Zhang F, He X H, Cheng C W, et al. Bis-imidazolium functionalized self-crosslinking block polynorbornene anion exchange membrane[J]. International journal of hydrogen energy, 2020, 45: 13090-13100. [14] Zhang Y, Wan Y, Zhao C G, et al. Novel side-chain-type sulfonated poly(arylene ether ketone) with pendantsulfoalkyl groups for direct methanol fuel cells [J]. Polymer, 2009, 50: 4471-4478. [15] Kim S, Lee H, Ahn D, et al. Direct sulfonation and photo crosslinkin go fun saturated poly(styrene-b-butadiene-b-styrene) for protonexchange membrane of direct methanol fuel cell [J]. Journal of Membrane Science, 2013, 427: 85-91. [16] Chen S Li, Bocarsly A B, Benziger J. Nafion-layered sulfonated polysulfone fuel cell membranes [J]. Journal of Power Sources, 2005, 152: 27-33. [17] Ekström H, Lafitte B, Ihonen J, et al. Evaluation of a sulfophenylated polysulfone membrane in a fuel cell at 60 to 110 °C [J]. Solid State Ionics 2007, 178: 959-966. [18] Wang G G, Weng Y M, Chu D, et al. Developing a polysulfone-based alkaline anion exchange membranefor improved ionic conductivity [J]. Journal of Membrane Science 2009, 332: 63-68. [19] 黄雁,沈家瑞. 淀粉-丙烯酰胺接枝共聚物增稠能力的研究[J].高分子材料科学与工程,1995(03):98-102. [20] 胡合新,孙斌,王恩泉.己内酰胺中挥发性碱杂质的控制[J].石油学报,2012,28(02):225-230. [21] 亓育杰,杨昱,郑张瑜,等. 噻呋酰胺的光解和水解特性研究[J].农药学学报,2016,18(04):540-544. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号