Surface optimization of SDC-SSF dual-phase oxygen permeable membranes and its oxygen permeability |
Authors: XIE Pinhong,LI Fang, PEI Yujie, GUO Yuanyu, WANG Yusheng, LI Qiming |
Units: School of petrochemical Engineering,Liaoning Petrochemical University,Fushun 113001,China |
KeyWords: dual-phase oxygen permeable membrane; chemical etching; porous layer; catalyst; oxygen flux |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2022,42(3):84-90 |
Abstract: |
SDC-SSF (75wt% Ce0.85Sm0.15O2-? -25wt% Sm0.6Sr0.4FeO3-?) dual phase oxygen permeable membranes were firstly synthesized by a sol-gel method. Then the ultra-microporous porous structure can be constructed on the surface of SDC-SSF oxygen permeable membranes by chemical etching method. The construction of the robust surface activation catalysts can be realized by means of porous layer. The experimental results show that SSF perovskite phase can be effectively leached out from the dual phase membrane by chemical etching, and thus the ultra-porous structure can be spontaneously formed based on the residual SDC fluorite particles. The cobalt-based perovskite catalysts with a lower melting point, Ba0.4 Sr0.4Ca0.2Co0.8Fe0.2O3-? (BSCCF), were coated onto SDC porous layer. After the second high temperature sintering, BSCCF perovskite catalysts can be melted and penetrate into SDC porous layer. Hence, a robust catalyst layer can be constructed on the surface of SDC-SSF dual phase membranes. In this paper, the oxygen permeation flux, the activation energy and rate-determining steps of the original membrane, the porous membrane and the membrane modified with the catalysts were compared systematically. It can be found that the oxygen permeation flux increases successively after chemical-etching and the catalyst loading. The maximum oxygen flux of the optimized 1.0 mm-thick SDC-SSF membrane reaches about 0.36 ml. cm-2. min-1 at 950oC. Through the analysis of Wagner equation, it can be found that the rate-determining step of SDC-SSF dual-phase membranes changes gradually from the surface exchanging control to the bulk diffusion control after chemical-etching and catalyst modifying. This study provides an effective method to construct a robust catalysis layer on the surface of dual-phase oxygen permeable membranes. |
Funds: |
国家自然科学基金项目(21703091, 21201096);辽宁省教育厅资助项目 (L2019009);辽宁科技厅计划指导项目(2019-ZD-0058)。 |
AuthorIntro: |
解品红(1996年-),女,在读硕士, 1771593694@qq.com;研究方向:膜分离材料研究。 |
Reference: |
[1] 苗强, 夏鑫, 杨微, 等. SDC-BCCF双相透氧膜材料的合成及透氧性能研究[J]. 膜科学与技术, 2018, 38(4): 75-80. [2] Shi L, Wang S, Lu T N, et al. High CO2-tolerance oxygen permeation dual-phase membranes Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4 Fe0.8Al0.2O3-δ[J]. Journal of Alloys and Compounds, 2019, 806: 500-509. [3] Tsai C Y. Dense perovskite membrane reactors for partial oxidation of methane to syngas[J]. AIChE Journal, 2010, 43(S11): 2741-2750. [4] Markov A, Merkulov O V, Patrakeev M V, et al. Hydrogen and synthesis gas co-production on oxygen membranes of mixed conductor: Scale-sensitive features of the process[J]. International Journal of Hydrogen Energy, 2019, 44(49): 26807-26815. [5] 张恒, 王婷婷,聂毅,等. SrFe0.6Cu0.3Ti0.1O3-δ透氧膜反应器中甲烷部分氧化反应工艺及膜稳定性考察[J]. 化工学报, 2014, 65(5): 1660-1666. [6] 牛少鹏, 周克崧, 邓畅光, 等. 超音速等离子喷涂制备非对称型La0.6Sr0.4Co0.2Fe0.8O3-δ透氧膜的性能[J]. 材料热处理学报, 2019, 40(09): 135-141. [7] 戴红亮, 邓畅光, 牛少鹏, 等. 超音速等离子喷涂La0.6Sr0.4Co0.2Fe0.8O3-δ透氧膜的制备与致密性研究[J]. 材料研究与应用, 2017, 11(2): 72-78. [8] Zhang Z C, Ning K, Xu Z, et al. Highly efficient preparation of Ce0.8Sm0.2O2-δ–SrCo0.9Nb0.1O3-δ dual-phase four-channel hollow fiber membrane via one-step thermal processing approach[J].Journal of Membrane Science, 2021, 620: 118752. [9] 杨微, 李芳, 孙爱玲, 等. SDC-SSF支撑型透氧膜的制备及透氧性能研究[J]. 膜科学与技术, 2019, 1: 41-47. [10] Huang K, Tichy R S, Goodenough J B. Superior perovskite oxide‐Ion conductor: strontium‐ and magnesium‐doped LaGaO3: II, AC impedance spectroscopy[J]. Journal of the American Ceramic Society, 2010, 81(10): 2565-2575. [11] Fujioka J, Miyasaka S, Tokura Y. Doping variation of orbitally-induced anisotropy in electronic structure of the perovskite-type vanadium oxides[C]. Aps March Meeting, 2007. [12] 蔡莉莉, 王静忆, 朱雪峰,等. 混合导体透氧膜反应器中水分解反应研究进展[J]. 化工学报, 2021, 79(5): 588-599. [13] Zhang G, Liu Z, Na Z, et al. A novel Nb2O5-doped SrCo0.8Fe0.2O3-δ oxide with high permeability and stability for oxygen separation[J]. Journal of Membrane Science, 2012, 405: 300-309. [14] Babakhani E G , Towfighi J , Shirazi L , et al. Structure stability and oxygen permeability of perovskite-type oxides of Ba0.5Sr0.5Co0.8Fe0.1R0.1O3-δ (R=Al, Mn, Fe, Ce, Cr, Ni, Co)[J]. Journal of Materials Science & Technology, 2012, 28(2):177-183. [15] Park J H, Sang D P. Oxygen permeability and structural stability of La0.6Sr0.4Co0.2Fe0.8O3−δ membrane[J]. Korean Journal of Chemical Engineering, 2007, 24(5): 897-905. [16] Shao Z P, Xiong G X, Dong H, et al. Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas[J]. Separation & Purification Technology, 2001, 25(1): 97-116.. [17] Liang W Y, Megarajan S K, Liang F Y, et al. Coupling of N2O decomposition with CO2 reforming of CH4 in novel cobalt-free BaFe0.9Zr0.05Al0.05O3−δ oxygen transport membrane reactor[J]. Chemical Engineering Journal, 2016, 305: 176–181. [18] Z.T. Wang, W. Liu, Y.S. Wu, W.P. Sun, W. Liu, C.Q. Wang. A novel cobalt-free CO2-stable perovskite-type oxygen permeable membrane[J]. Journal of Membrane Science, 2019, 573: 504–510. [19] 廖庆. 高透量、高稳定性透氧膜材料及其透氧性能研究[D]. 广州: 华南理工大学, 2015. [20] Li Q M, Zhu X, He Y, et al. Effects of sintering temperature on properties of dual-phase oxygen permeable membranes[J]. Journal of Membrane Science, 2011, 367: 134-140. [21] Yang W, Li F, Li Q M. Preparation of sandwich-structured Ce0.8Sm0.2O1.9-Sm0.6Sr0.4FeO3-d ceramic membranes and its oxygen permeability[J]. Chemical Engineering Science, 2019, 199: 210-219. [22] 李雷雷, 杨志宾, 韩敏芳. Ba0.9Co0.7Fe0.2Nb0.1O3-δ-Gd0.1Ce0.9O2-δ双相复合透氧膜的氧渗透性能[J]. 硅酸盐学报, 2017, 45(6): 778-784. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号