Multi-field simulation of the flow channel of spiral wound module by finite volume method |
Authors: GUAN Hui, LIN Peifeng, YU Sanchuan |
Units: School of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, China |
KeyWords: Spiral wound membrane module; Finite volume method (FVM); Multi-field simulation; Configuration optimization |
ClassificationCode:TQ028.3 |
year,volume(issue):pagination: 2022,42(3):129-134 |
Abstract: |
This study focused on the multi-field simulation of the flow channel of spiral wound membrane module by finite volume method (FVM). The (FVM) The fluid velocity, pressure and wall shear stress distributions within the flow channel of spiral wound membrane module with the feed spacer of different filament included angles (60o, 90o and 120o) were simulated by FVM method. The results showed that, with the increase of the included angle between filaments of feed spacer, the velocity of the fluid within the channel increased and the concentration polarization near membrane surface became weakened. With the included angle ascended from 60o to 90o, the wall shear stress on the membrane surface was enhanced by 12% and the pressure drop along the flow channel increased by 10%. When the included angle ascended from 90o to 120o, the wall shear stress on the membrane surface was enhanced by 14% and the pressure drop along the flow channel increased by 15%. Therefore, as far as the loss of energy is allowed, the increase of included angle between the filaments of feed spacers was beneficial to alleviate the concentration polarization near the membrane surface. |
Funds: |
国家自然科学基金项目(51676173)、浙江省重点研发计划项目(2020C03081) |
AuthorIntro: |
管徽(1999.09--),男,安徽六安人,硕士生,从事膜分离技术研究 |
Reference: |
[1] 朱长乐. 膜科学技术[M]// 杭州: 浙江大学出版社, 2004: 300-306. [2] Amokrane M, Sadaoui D, Koutsou C P, et al. A study of flow field and concentration polarization evolution in membrane channels with two-dimensional spacers during water desalination[J]. Journal of Membrane Science, 2015, 477: 139-150. [3] Schewing J, Wiley D E, Fletcher D F. Simulation of the flow around spacer filaments between channel walls. 2. mass-transfer enhancement[J]. Industrial & Engineering Chemistry Research, 2002, 41(19): 4879-4888. [4] Li F, Meinderma W, Haan A B D, et al. Novel spacers for mass transfer enhancement in membrane separation[J]. Journal of Membrane Science, 2005, 253(1-2): 1-12. [5] 王福军.计算流体力学动力学分析-CFD软件原理与应用[M]// 北京:清华大学出版社, 2004, 1-3. [6] Reid K, Dixon M, Pelekani C, et al. Biofouling control by hydrophilic surface modification of. polypropylene feed spacers by plasma polymerization[J]. Desalination, 2014, 335: 108–118. [7] Sciwing J, Wiley D E, Fletcher D F. A CFD study of unsteady flow in narrow spacers-filled channels for spiral-wound membrane modules[J]. Desalination, 2002, 146(1-3): 195-201. [8] Tan Y Z, Mao Z M, Zhang Y J, et al. Enhancing fouling mitigation of submerged flat-sheet membranes by vibrating 3D-spacers[J]. Separation and Purification Technology, 2019, 215:70–80. [9] Fritzmann C, Hausmann M, Wiese M, et al. Microstructure spacers for submerged membrane filtration systems[J]. Journal of Membrane Science, 2013, 446(11): 189–200. [10] Thomas N, Sreedhar N, Al-Ketan O, et al. 3D printed triply periodic minimal surfaces as spacers for enhanced heat and mass transfer in membrane distillation[J]. Desalination, 2018, 443:256–271. [11] Saeed A, Vuthaluru R, Yang Y, et al. Effect of feed spacer arrangement on flow dynamics through spacer filled membranes[J]. Desalination, 2012, 285:163-169 [12] Fimbres-Weihs G A, Wiley D E. Numerical study of mass transfer in three-dimensional spacer-filled narrow channels with steady flow[J]. Journal of Membrane Science, 2007, 306(15): 228-243. [13] 王涛, 何欣平, 吴珍,等. 平板膜组件隔网构型的CFD的模拟[J]. 膜科学与技术,2017, 37(3): 89-96. [14] 方健, 张峰, 仲兆祥,等. CFD应用于反渗透膜组件隔网构型的优化研究[J]. 膜科学与技术,2018, 38(1):74-80. [15] Bucs S S, Radu A l, Lavric V. Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: A numerical study[J]. Desalination, 2014, 343:26-37. [16] Shakib M, Hasnai S M F, Mahmood M. CFD modeling for flow and mass transfer in spacer-obstructed membrane feed channels[J]. Journal of Membrane Science, 2009(2), 326: 270-284. [17] Li M H, Bui T, Chao S, et al. Three-dimensional CFD analysis of hydrpdynamics and concertration polarization in an industrial RO feed channel[J]. Desalination, 2016, 397:194-204. [18] Yang F, Bick A, Shandalov S, et al. Yield stress and rheological characteristics of activated sludge in an air-lift membrane bioreactior[J]. Journal of Membrane Science, 2009, 334(1/2): 83-90. [19] 杜星, 张开朗, 关妙婷,等. 压力驱动膜系统中流体剪切力以及对膜污染的影响[J]. 膜科学与技术, 2018, 38(6):138-148. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号