Position:Home >> Abstract

Research progress on alkaline stability of cation groups in anion exchange membranes
Authors: Wang Xue,Li Yonggang,Zheng Jifu,Zhang Suobo,Li Shenghai
Units: 1. Key Lab of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; 2. School of Applied Chemistry and Technology, University of Science and Technology of China, Hefei 230026, China
KeyWords: Alkaline anion exchange membrane fuel cells; Anion exchange membranes; Alkaline stability; Cationic groups
ClassificationCode:TM911.48
year,volume(issue):pagination: 2022,42(3):145-152

Abstract:
 Alkaline anion exchange membrane fuel cells (AAEMFCs) have been developed rapidly due to their excellent kinetic reaction characteristics, the availability of low-cost non-Pt catalysts, and the ability to inhibit fuel penetration. As the core part of AAEMFCs, anion exchange membrane (AEMs) plays a direct and critical role in the performance of AAEMFCs. To meet the requirements of AAEMFCs, AEMs usually require high OH- ionic conductivity and excellent thermal, mechanical, and alkaline stability. However, the alkaline stability of AEMs is still facing great challenges. The decrease of the alkaline stability of AEMs is mainly caused by the degradation of the polymer backbone and cationic groups in the alkaline environment. In this paper, combined with recent research progress at home and abroad, the alkaline stability problems and solutions of cationic groups of AEMs are sorted out, and the development trend of AEMs in the future is reasonably predicted.

Funds:
国家自然科学基金(21774213)、吉林省科技发展计划(20200801051GH)

AuthorIntro:
王雪(1997-),女,河北邢台人,在读硕士生,主要从事膜材料的制备与性能方向的研究

Reference:
[1] 马成乡. 氢燃料电池的应用研究进展 [J]. 山东化工, 2015, 44(09): 64-65.
[2] 张建军. 阴离子交换膜制备及碱性燃料电池应用研究 [D]; 中国科学技术大学, 2020.
[3] RAN J, WU L, HE Y B, et al. Ion exchange membranes: New developments and applications [J]. Journal of Membrane Science, 2017, 522: 267-291.
[4] 薛博欣. 耐碱型有机阳离子的分子结构设计及阴离子交换膜制备 [D]; 中国科学技术大学, 2020.
[5] LI J L, BU F Z, RU C Y, et al. Enhancing the selectivity of Nafion membrane by incorporating a novel functional skeleton molecule to improve the performance of direct methanol fuel cells [J]. Journal of Materials Chemistry A, 2020, 8(36): 196-206.
[6] CHENG J, HE G H, ZHANG F X. A mini-review on anion exchange membranes for fuel cell applications: Stability issue and addressing strategies [J]. International Journal of Hydrogen Energy, 2015, 40(23): 7348-7360.
[7] THOMPSON S T, PETERSON D, HO D, et al. Perspective-The Next Decade of AEMFCs: Near-Term Targets to Accelerate Applied R&D [J]. Journal of the Electrochemical Society, 2020, 167(8),084514
[8] MERLE G, WESSLING M, NIJMEIJER K. Anion exchange membranes for alkaline fuel cells: A review [J]. Journal of Membrane Science, 2011, 377(1-2): 1-35.
[9] LIU Y-Z, DING L, LIU J, et al. Polyphenylene Oxide Based Ion Exchange Membranes for Fuel Cells [J]. Acta Polymerica Sinica, 2018, (7): 797-813.
[10] 司江菊, 卢善富, 相艳. 燃料电池用碱性阴离子交换膜链结构调控研究进展 [J]. 科学通报, 2019, 64(02): 153-164.
[11] GOTTESFELD S, DEKEL D R, PAGE M, et al. Anion exchange membrane fuel cells: Current status and remaining challenges [J]. Journal of Power Sources, 2018, 375: 170-184.
[12] YOU W, HUGAR K M, SELHORST R C, et al. Degradation of Organic Cations under Alkaline Conditions [J]. The Journal of Organic Chemistry, 2021, 86(1): 254-263.
[13] LIU L, CHU X M, LIAO J Y, et al. Tuning the properties of poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes and their performance in H-2/O-2 fuel cells [J]. Energy & Environmental Science, 2018, 11(2): 435-446.
[14] STURGEON M R, MACOMBER C S, ENGTRAKUL C, et al. Hydroxide based Benzyltrimethylammonium Degradation: Quantification of Rates and Degradation Technique Development [J]. Journal of The Electrochemical Society, 2015, 162(4): F366-F372.
[15] MARINO M G, KREUER K D. Alkaline Stability of Quaternary Ammonium Cations for Alkaline Fuel Cell Membranes and Ionic Liquids [J]. Chemsuschem, 2015, 8(3): 513-523.
[16] 牛梦瑶. 哌啶基碱性阴离子交换膜的合成与改性 [D]; 大连理工大学, 2019.
[17] WANG J, ZHAO Y, SETZLER B P, et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells [J]. Nature Energy, 2019, 4(5): 392-398.
[18] ZHANG Y, CHEN W, LI T, et al. Tuning hydrogen bond and flexibility of N-spirocyclic cationic spacer for high performance anion exchange membranes [J]. Journal of Membrane Science, 2020, 613,118507
[19] HUGAR K M, KOSTALIK H A, COATES G W. Imidazolium Cations with Exceptional Alkaline Stability: A Systematic Study of Structure-Stability Relationships [J]. Journal of the American Chemical Society, 2015, 137(27): 8730-8737.
[20] DEAVIN O I, MURPHY S, ONG A L, et al. Anion-exchange membranes for alkaline polymer electrolyte fuel cells: comparison of pendent benzyltrimethylammonium- and benzylmethylimidazolium-head-groups [J]. Energy & Environmental Science, 2012, 5(9): 8584-8597.
[21] PRICE S C, WILLIAMS K S, BEYER F L. Relationships between Structure and Alkaline Stability of Imidazolium Cations for Fuel Cell Membrane Applications [J]. ACS Macro Letters, 2014, 3(2): 160-165.
[22] GUO D, LIN C X, HU E N, et al. Clustered multi-imidazolium side chains functionalized alkaline anion exchange membranes for fuel cells [J]. Journal of Membrane Science, 2017, 541: 214-223.
[23] PAN J, SUN Z, ZHU H, et al. Synthesis and characterization of main-chain type polyimidazolium-based alkaline anion exchange membranes [J]. Journal of Membrane Science, 2020, 610,118283
[24] XUE B X, CUI W D, ZHOU S Y, et al. Facile Preparation of Highly Alkaline Stable Poly(arylene–imidazolium) Anion Exchange Membranes through an Ionized Monomer Strategy [J]. Macromolecules, 2021, 54(5): 2202-2212.
[25] WANG J H, LI S H, ZHANG S B. Novel Hydroxide-Conducting Polyelectrolyte Composed of an Poly(arylene ether sulfone) Containing Pendant Quaternary Guanidinium Groups for Alkaline Fuel Cell Applications [J]. Macromolecules, 2010, 43(8): 3890-3896.
[26] 薛博欣, 郑吉富, 张所波. 耐碱的胍盐阴离子交换膜研究进展 [J]. 科学通报, 2019, 64(02): 134-144.
[27] XUE B X, WANG F, ZHENG J F, et al. Highly stable polysulfone anion exchange membranes incorporated with bulky alkyl substituted guanidinium cations [J]. Molecular Systems Design & Engineering, 2019, 4(5): 1039-1047.
[28] XUE B X, WANG Q, ZHENG J F, et al. Bi-guanidinium-based crosslinked anion exchange membranes: Synthesis, characterization, and properties [J]. Journal of Membrane Science, 2020, 601,117923
[29] 杨佳睿. 耐碱性阴离子交换膜的制备 [D]; 辽宁石油化工大学, 2019.
[30] GU S, CAI R, LUO T, et al. A Soluble and Highly Conductive Ionomer for High-Performance Hydroxide Exchange Membrane Fuel Cells [J]. Angewandte Chemie-International Edition, 2009, 48(35): 6499-6502.
[31] ZHANG B Z, KASPAR R B, GU S, et al. A New Alkali-Stable Phosphonium Cation Based on Fundamental Understanding of Degradation Mechanisms [J]. Chemsuschem, 2016, 9(17): 2374-2379.
[32] NOONAN K J T, HUGAR K M, KOSTALIK H A, et al. Phosphonium-Functionalized Polyethylene: A New Class of Base-Stable Alkaline Anion Exchange Membranes [J]. Journal of the American Chemical Society, 2012, 134(44): 18161-18164.
[33] HUGAR K M, YOU W, COATES G W. Protocol for the Quantitative Assessment of Organic Cation Stability for Polymer Electrolytes [J]. ACS Energy Letters, 2019, 4(7): 1681-1686.
[34] ZHA Y P, DISABB-MILLER M L, JOHNSON Z D, et al. Metal-Cation-Based Anion Exchange Membranes [J]. Journal of the American Chemical Society, 2012, 134(10): 4493-4496.
[35] ZHU T Y, SHA Y, FIROUZJAIE H A, et al. Rational Synthesis of Metallo-Cations Toward Redox- and Alkaline-Stable Metallo-Polyelectrolytes [J]. Journal of the American Chemical Society, 2020, 142(2): 1083-1089.
[36] ZHENG X Y, SONG S Y, YANG J R, et al. 4-formyl dibenzo-18-crown-6 grafted polyvinyl alcohol as anion exchange membranes for fuel cell [J]. European Polymer Journal, 2019, 112: 581-590.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号