Position:Home >> Abstract

Preparation of C/TiO2 photocatalytic self-cleaning membrane and its degradation of rhodamine B
Authors: CUI Yingkai, LI Xiangcun, JIANG Xiaobin, WU Xuemei, HE Gaohong, XIAO Wu
Units: State Key Laboratory of Fine Chemicals, R & D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116024, China
KeyWords: Patterned porous; C/TiO2; photocatalysis; self-cleaning; modified membrane
ClassificationCode::TQ034
year,volume(issue):pagination: 2022,42(4):33-42

Abstract:
 A C/TiO2 catalyst with patterned porous structure was prepared by the ultraviolet self-polymerization-burning method with pyrrole as the carbon source. Which effectively improved the light response ability and light utilization efficiency of the TiO2 catalyst under visible light conditions, so as to improve the degradation rate of Rhodamine B dye in wastewater. After comparison of experiment data, it is concluded that the degradation rate of Rhodamine B by C/TiO2-0.4 can reach 91.80% within 90 min. At the same time, C/TiO2-0.4 was mixed into the PVDF membrane solution, and the modified membrane was prepared by the phase inversion method. In a single degradation test under simulated solar, the degradation rate of Rhodamine B by the modified membrane reached 80.18%. In the 4 cycles of degradation, the degradation rate of Rhodamine B by the modified membrane stabilized above 60%. In addition, under simulated sunlight, the modified membrane can be restored to the state before adsorption within 5 h, which is beneficial to its long-term recycling. The results show that the photocatalytic self-cleaning membrane loaded with C/TiO2 has a significant effect on the degradation of Rhodamine B dye wastewater under simulated sunlight conditions.

Funds:
国家自然科学基金创新研究群体科学基金项目(22021005);辽宁省自然科学基金项目(2021-MS-116);大连创新基金资助(2019J12SN68)

AuthorIntro:
崔瑛锴(1997-),男,黑龙江齐齐哈尔人,硕士研究生,从事光催化水处理的研究,E-mail:cyk2523070824@163.com

Reference:
 [1] Routoula E, Patwardhan S V. Degradation of anthraquinone dyes from effluents: A review focusing on enzymatic dye degradation with industrial potential[J]. Environ Sci Technol, 2020, 54(2): 647-664.
[2] Katheresan V, Kansedo J, Lau S Y. Efficiency of various recent wastewater dye removal methods: A review[J]. J Environ Chem Eng, 2018, 6(4): 4676-4697.
[3] Pelaez M, Nolan N T, Pillai S C, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications[J]. Appl Catal B-Environ, 2012, 125: 331-349.
[4] Saeed M, Muneer M, Haq A U, et al. Photocatalysis: an effective tool for photodegradation of dyes—A review[J]. Environ Sci Pollut R, 2022, 29: 293-311.
[5] Romanos G E, Athanasekou C P, Likodimos V, et al. Hybrid ultrafiltration/photocatalytic membranes for efficient water treatment[J]. Ind Eng Chem Res, 2013, 52(39): 13938-13947.
[6] 余少彬,张铭泰,李希成,等. 新型复合纳米材料用于光催化降解染料废水的研究进展[J/OL]. 材料工程, 材料工程:1-11 [网络首发时间2021-06-04]. http://kns.cnki.net/kcms/detail/11.1800.TB.20210603.1521.004.html.
[7] Riaz S, Park S. An overview of TiO2-based photocatalytic membrane reactors for water and wastewater treatments[J]. J Ind Eng Chem, 2019, 84: 23-41.
[8] Zhang X, Wang D K, Lopez D R S, et al. Fabrication of nanostructured TiO2 hollow fiber photocatalytic membrane and application for wastewater treatment[J]. Chem Eng J, 2014, 236: 314-322.
[9] Shet A, Shetty K V. Photocatalytic degradation of phenol using Ag core-TiO2 shell (Ag@TiO2) nanoparticles under UV light irradiation[J]. Environ Sci Pollut R, 2016, 23(20): 20055-20064.
[10] 于然. TiO2光催化复合分离膜的制备及其在UV/H2O2协同作用下的水处理性能[D]. 大连:大连理工大学, 2018.
[11] Gan Q, Feng G, Liu X, et al. Self-assembly of mesoporous Bi-S-TiO2 composites for degradation of industrial dinitrotoluene solution under UV light[J]. Environ Sci Pollut R, 2017, 24(10): 9585-9593.
[12] 余立志,李京伟,林银河. 非金属掺杂改性纳米TiO2光催化性能研究进展[J]. 应用化工, 2019, 48(8): 1944-1948.
[13] Choi Y, Koo M S, Bokare A D, et al. Sequential process combination of photocatalytic oxidation and dark reduction for the removal of organic pollutants and Cr(VI) using Ag/TiO2[J]. Environ Sci Technol, 2017, 51(7): 3973-3981.
[14] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem Soc Rev, 2009, 38(1): 253-278.
[15] Song Y, Cho N, Lee M, et al. Photocatalytic activity of W-Doped TiO2 nanofibers for methylene blue dye degradation[J]. J Nanosci Nanotechno, 2016, 16(2): 1831-1833.
[16] Palanisamy B, Babu C M, Sundaravel B, et al. Sol–gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatalyst: Application for degradation of 4-chlorophenol[J]. J Hazard Mater, 2013, 252-253: 233-242.
[17] Mittal A, Mari B, Sharma S, et al. Non-metal modified TiO2: A step towards visible light photocatalysis[J]. J Mater Sci-Mater Electron, 2019, 30(4): 3186-3207.
[18] Fang W, Xing M, Zhang J. Modifications on reduced titanium dioxide photocatalysts: A review[J]. J Photochem Photobiol C-Photochem Rev, 2017, 32: 21-39.
[19] Wang S, Zhao L, Bai L, et al. Enhancing photocatalytic activity of disorder-engineered C/TiO2              and TiO2 nanoparticles[J]. J Mater Chem A, 2014, 2(20): 7439-7445.
[20] 徐杏. 吡啶类有机物衍生的C,N改性TiO2光催化产氢性能研究[D]. 杭州:浙江工业大学, 2019.
[21] 明海. TiO2及C/TiO2纳米材料的结构设计与光催化特性研究[D]. 苏州:苏州大学, 2012.
[22] 孙佳斯. 微球化及聚吡咯改性多孔TiO2催化性能[D]. 大连:大连理工大学, 2012.
[23] Mamba G, Mishra A. Advances in magnetically separable photocatalysts: Smart, recyclable materials for water pollution mitigation[J]. Catalysts, 2016, 6(6): 79.
[24] 王硕. FePc-TiO2与PVDF膜耦合处理染料废水[D]. 大连:大连理工大学, 2016.
[25] 陈黄锰,宋宏臣,王建明,等. 光催化-膜分离耦合工艺对腐殖酸的过滤机理研究[J]. 膜科学与技术, 2014, 34(06): 89-95.
[26] Sun X X, Liu G, Li R, et al. Polyporous PVDF/TiO2 photocatalytic composites for photocatalyst fixation, recycle, and repair[J]. J Am Ceram Soc, 2021, 104(12): 6290-6298.
[27] Li X, John V T, He G, et al. Shear induced formation of patterned porous titania with applications to photocatalysis[J]. Langmuir, 2009, 25(13): 7586-7593.
[28] Li X, Wu X, He G, et al. Microspheroidization treatment of macroporous TiO2 to enhance its recycling and prevent membrane fouling of photocatalysis–membrane system[J]. Chem Eng J, 2014, 251: 58-68.
[29] 薛倩. 乳化液膜法制备多孔TiO2复合材料[D]. 大连:大连理工大学, 2012.
[30] 江广兰. 有序大孔—介孔TiO2复合材料的制备及其性能研究[D]. 大连:大连理工大学, 2014.
[31] Liu R, Li H, Duan L, et al. In situ synthesis and enhanced visible light photocatalytic activity of C-TiO2 microspheres/carbon quantum dots[J]. Ceram Int, 2017, 43(12): 8648-8654.
[32] Liu J, Zhu W, Yu S, et al. Three dimensional carbogenic dots/TiO2 nanoheterojunctions with enhanced visible light-driven photocatalytic activity[J]. Carbon, 2014, 79: 369-379.
[33] 李慧泉. 锌系光催化剂的制备及应用[M]// 北京:中国书籍出版社, 2016.
[34] Zhang J, Tong H, Pei W, et al. Integrated photocatalysis-adsorption-membrane separation in rotating reactor for synergistic removal of RhB[J]. Chemosphere, 2021, 270: 129424.
[35] 杨春燕,王侨,张广山,等. 光催化复合超滤膜的制备与催化性能[J]. 中国环境科学, 2017, 37(12): 4564-4570.
[36] Mahlambi M M, Mahlangu O T, Vilakati G D, et al. Visible light photodegradation of rhodamine B dye by two forms of carbon-covered alumina supported TiO2 /Polysulfone membranes[J]. Ind Eng Chem Res, 2014, 53(14): 5709-5717.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号