Preparation of KAUST-7 Gas Separation Membrane by Inorganic Pillar Center-Facilitated Secondary Growth Method |
Authors: CUI Yanwen, LV Jinyin, YANG Jianhua, LU Jinming, ZHANG Yan |
Units: State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, Dalian University of Technology, Dalian 116024, China |
KeyWords: KAUST-7 membrane; inorganic pillar center; secondary growth method; H2 separation |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2022,42(5):24-32 |
Abstract: |
The ultra-microporous KAUST-7 fluorinated metal-organic framework contains pores with a size of 3.0-4.8 Å and has the specific adsorption for propylene and CO2, which is a potential membrane material candidate for the separation of small-molecule gases. In this study, the inorganic pillar center-facilitated secondary growth method was proposed to fabricate continuous KAUST-7 membranes. Firstly, KAUST-7 crystals were synthesized via inorganic pillar center-facilitated method. The size and morphology of KAUST-7 crystals were manipulated by adjusting ethanol volume ratio in the solvent, under the optimized condition, nano KAUST-7 crystals (~70 nm) were obtained. The KAUST-7 membrane fabricated by secondary growth on α-Al2O3 tubes using (NbOF5)2- inorganic pillar as fluorine and niobium sources, and the effect of seed layer prepared by hot dip-coating method and layer by layer (LBL) method were investigated. The KAUST-7 membrane with higher separation performance was fabricated by LBL seed method, which showed a H2 permeance of 2.23 × 10-7 mol·m-2·s-1·Pa-1 and achieved the ideal selectivities up to 24.86, 17.34 and 12.95 for H2/CO2, H2/N2 and H2/CH4, respectively. The substitution of concentrated HF with pre-synthesized NiNbOF5 inorganic pillar center avoids the hydrofluoric acid corrosion to α-Al2O3 supports by one-pot synthesis, which contributed to the fabrication of gas-separation membrane under mild conditions. |
Funds: |
国家自然科学创新群体项目(NO.22021005); 国家自然科学项目(NO.21776032) |
AuthorIntro: |
崔燕雯(1996-),女,新疆昌吉人,硕士研究生,研究方向为MOF膜的制备与应用, E–mail:cuiyanwen20@163.com |
Reference: |
[1] Ryu U, Jee S, Rao P C, et al. Recent advances in process engineering and upcoming applications of metal–organic frameworks[J]. Coord Chem Rev, 2021, 426: 213544-213616. [2] Daglar H, Keskin S. Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations[J]. Coord Chem Rev, 2020, 422: 213470-213489. [3] Qian Q, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chem Rev, 2020, 120(16): 8161-8266. [4] Shi D, Yu X, Fan W, et al. Polycrystalline zeolite and metal-organic framework membranes for molecular separations[J]. Coord Chem Rev, 2021, 437: 213794-213822. [5] Wei R, Chi H Y, Li X, et al. Aqueously cathodic deposition of ZIF-8 membranes for superior propylene/propane separation[J]. Adv Func Mater. 2020, 30(7): 1907089-1907095. [6] Zhou S, Wei Y, Li L, et al. Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation[J]. Sci Adv. 2018, 4(10): 1393-1400. [7] Li W, Su P, Li Z, et al. Ultrathin metal–organic framework membrane production by gel–vapour deposition[J]. Nat Commu. 2017, 8(1): 406-413. [8] Ma X, Kumar P, Mittal N, et al. Zeolitic imidazolate framework membranes made by ligand-induced permselec-tivation[J]. Science. 2018, 361(6406): 1008-1011. [9] Hou Q, Zhou S, Wei Y, et al. Balancing the grain boundary structure and the framework flexibility through bimetallic metal–organic framework (MOF) membranes for gas separation[J]. J Am Chem Soc. 2020, 142: 9582-9586. [10] Ma Q, Mo K, Gao S S, et al. Ultrafast semi-solid processing of highly durable ZIF-8 membranes for propylene/propane separation[J]. Angew Chem Int Ed. 2020, 59(49): 21909-21914. [11] Wang Y, Jin H, Ma Q, et al. A MOF glass membrane for gas separation[J]. Angew Chem Int Ed. 2020, 59(11): 4365-4369. [12] Deng A, Shen X, Wan Z, et al. Elimination of grain boundary defects in zeolitic imidazolate framework ZIF-95 membrane via solvent-free secondary growth[J]. Angew Chem Int Ed. 2021, 60(48): 25463-25467. [13] Chiou D S, Yu H J, Hung T H, et al. Highly CO2 selective metal–organic framework membranes with favorable coulombic effect[J]. Adv Func Mater. 2021, 31(4): 2006924-2006934. [14] Sun Y, Liu Y, Caro J, et al. In-plane epitaxial growth of highlyc-oriented NH2-MIL-125 (Ti) membranes with Superior H2/CO2 selectivity[J]. Angew Chem Int Ed. 2018, 57(49): 16088-16093. [15] Rui Z, James J B, Kasik A, et al. Metal-organic framework membrane process for high purity CO2 production[J]. AIChE J. 2016, 62(11): 3836-3841. [16] Fan W, Ying Y, Peh S B, et al. Multivariate polycrystalline metal–organic framework membranes for CO2/CH4 separation[J]. J Am Chem Soc. 2021, 143(42): 17716-17723. [17] Hou Q, Wu Y, Zhou S, et al. Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation[J]. Angew Chem Int Ed. 2019, 58(1): 327-331. [18] Cadiau A, Adil K, Bhatt P M, et al. A metal-organic framework-based splitter for separating propylene from propane[J]. Science, 2016, 353(6295): 137-140. [19] Bhatt P M, Belmabkhout Y, Cadiau A, et al. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption[J]. J Am Chem Soc, 2016, 138(29): 9301-9307. [20] Belmabkhout Y, Zhang Z, Asil K, et al. Hydrocarbon recovery using ultra-microporous fluorinated MOF platform with and without uncoordinated metal sites: I-structure properties relationships for C2H2/C2H4 and CO2/C2H2 separation[J]. Chem Eng J, 2019, 359: 32-36. [21] Tchalala M R, Bhatt P M, Chappanda K N, et al. Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air[J]. Nat Comm, 2019, 10(1): 1328-1337. [22] Liu G, Cadiau A, Liu Y, et al. Enabling fluorinated MOF-based membranes for simultaneous removal of H2S and CO2 from natural Gas[J]. Angew Chem Int Ed, 2018, 57(45): 14811-14816. [23] Chen K, Xu K, Xiang L, et al. Enhanced CO2/CH4 separation performance of mixed-matrix membranes through dispersion of sorption-selective MOF nanocrystals[J]. J Membr Sci, 2018, 563: 360-370. [24] Lv J, Cui Y, Yang J, et al. Inorganic pillar center-facilitated counter diffusion synthesis for highly H2 perm-selective KAUST-7 membranes[J]. ACS Appl Mate & Interfaces, 2022, 14(3): 4297-4306. [25] Sindoro M, Jee A, Granick S, et al. Shape-selected colloidal MOF crystals for aqueous use[J]. Chem Comm, 2013, 49(83): 9576-9578. [26] Cheng L, Yang J, Saulat H, et al. Fabrication and orientation of Ni-LAB membranes by linker salt approach[J]. Microporous Mesoporous Mater, 2019, 287: 135-143. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号