Position:Home >> Abstract

Fluid Flow Channel Optimization of Spiral Wound Membrane Module Using CFD
Authors: YANG Mingzhi, HOU Mengjie, WU Hongyu, LI Lin, XU Ruisong, KANG Guodong, CAO Yiming, WANG Zhi, WANG Tonghua
Units: 1. Dalian Key Laboratory of Membrane Materials and Membrane Process, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China 2. School of Chemical Engineering, Institute of Chemical Engineering, Tianjin University, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Joint State Key Laboratory of Chemical Engineering (Tianjin University), Tianjin Chemical and Chemical Engineering Collaborative Innovation Center,Tianjin 300072, China 3. National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
KeyWords: Spiral Wound Module; Computational Fluid Dynamics; Gas Membrane Separation; Simulation and Calculation
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2022,42(5):79-85

Abstract:
 After simplifying the fluid flow channel of spiral wound membrane module, the computational fluid dynamics (CFD) method is used to perform three-dimensional simulation of the fluid flow in the channel. The fluid flow state, the carbon dioxide separation and mass transfer effect using different spacer woven type were investigated. The results show that the partial woven spacer can simultaneously achieve better separation performance and lower pressure drop. Its pressure drop is about 60 Pa/m and percentage of CO2 separation is about 90 %.

Funds:
国家重点研发计划(2017YFB0603403),国家自然科学基金(21878033,21978034),大连市科技创新基金项目(2018J12GX031)

AuthorIntro:
杨明智(1996-),男,硕士研究生,山东淄博人,从事气体分离卷式膜组件传质模型研究。Email:yangmingzhi1996@outlook.com

Reference:
 [1] 赵志强,张贺,焦畅,王秋枫,林贤莉.全球CCUS技术和应用现状分析[J].现代化工,2021,41(04):5-10.
[2] 刘牧心,梁希,林千果.碳中和背景下中国碳捕集、利用与封存项目经济效益和风险评估研究[J].热力发电,2021,50(09):18-26.
[3] 罗双江,白璐,单玲珑,张香平.膜法二氧化碳分离技术研究进展及展望[J].中国电机工程学报,2021,41(04):1209-1216+1527.
[4] 罗鸣.膜技术在气体分离中的应用[J].大众标准化,2020(24):184-185.
[5] LI F, MEINDERSMA W, de HAAN A B, et al. Optimization of commercial net spacers in spiral wound membrane modules[J]. Journal of Membrane Science, 2002,208(1): 289-302.
[6] 颜学升,郁有阳,左子文,田程友,颜亮.膜蒸馏组件结构优化计算流体力学模拟及实验研究[J].科学技术与工程,2020,20(27):11204-11211.
[7] 康志雄. 反渗透膜组件隔网的CFD模拟优化[D].天津工业大学,2020.
[8] 王宗亮,贾玉香,胡仰栋.卷式膜组件中隔板网丝的优化[J].中国海洋大学学报(自然科学版),2018,48(11):87-92.
[9] 何欣平,王涛,李祥,李继定.计算流体力学在膜过程传质优化中的研究进展[J].化工进展,2017,36(06):1961-1968.
[10] HADDADI B, JORDAN C, MILTNER M, et al. Membrane modeling using CFD: Combined evaluation of mass transfer and geometrical influences in 1D and 3D[J]. Journal of Membrane Science,2018,563: 199-209.
[11] PARK J, LEE K S. A two-dimensional model for the spiral wound reverse osmosis membrane module[J]. Desalination,2017,416: 157-165.
[12] GU B, KIM D Y, KIM J H, et al. Mathematical model of flat sheet membrane modules for FO process: Plate-and-frame module and spiral-wound module[J]. Journal of Membrane Science, 2011,379(1-2): 403-415.
[13] AL-OBAIDI M A, KARA-ZAÏTRI C, MUJTABA I M. Simulation and sensitivity analysis of spiral wound reverse osmosis process for the removal of dimethylphenol from wastewater using 2-D dynamic model[J]. Journal of Cleaner Production, 2018,193: 140-157.
[14] GU B, ADJIMAN C S, XU X Y. The effect of feed spacer geometry on membrane performance and concentration polarisation based on 3D CFD simulations[J]. Journal of Membrane Science, 2017,527: 78-91.
[15] GU B, XU X Y, ADJIMAN C S. A predictive model for spiral wound reverse osmosis membrane modules: The effect of winding geometry and accurate geometric details[J]. Computers & Chemical Engineering,2017,96: 248-265.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号