Preparation of Structurally Integrated Janus Membranes Applied to Oil-Water Emulsion Separation |
Authors: DENG Chengyu, LI Tiantian, HOU Xueyi, LU Yanyue , LIU Fu |
Units: School of Chemistry and Chemical Engineering of Guangxi Minzu for Nationalities, Guangxi Key Laboratory of Polysaccharide Materials and Modification, Guangxi, Nanning 530006;Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang, Ningbo 315201;Hebei University of Science and Technology, School of Materials Science and Engineering, Hebei, Shijiazhuang 050018 |
KeyWords: polyvinylidene fluoride; hydrophilic modification; membranes; emulsions; separation |
ClassificationCode:TQ316.6 改性处理,TQ317 高分子化合物产品,TQ319 三 |
year,volume(issue):pagination: 2022,42(6):57-69 |
Abstract: |
Hydrophilic polymer copolymers (PVP-VTES) were hydrolyzed, unidirectional migration and thermal crosslinking in the polyvinylidene fluoride (PVDF) matrix to make the membrane surface show effective hydrophilicity, and Janus membrane with controllable thickness of hydrophilic layer and "structural integration" of hydrophilic/hydrophobic layer were successfully prepared. The morphology, structure, chemical composition, wettability and other performance parameters of Janus membrane was characterized. The results showed that the water contact Angle (WCA) value of the hydrophobic surface of Janus membrane remained at 110 °, the underwater oil contact Angle (OCA) value of the five oil droplets decreased to 0 ° rapidly, and the underwater OCA value of the hydrophilic surface of Janus membrane was as high as 155 °. Janus membrane was used for switchable separation of oil-in-water (O/W) or water-in-oil (W/O) emulsion: the water flux of O/W emulsion for soybean oil was 22.88 L/m2 ·h, and the separation efficiency was 93.35 %; the oil flux for W/O emulsion was 17.45 L/m2 ·h, and the separation efficiency was 91.47 %. The water flux of O/W emulsion for chloroform was 358.81 L/m2 ·h, and the separation efficiency was 95.54 %. The oil flux of W/O emulsion for toluene was 269.21 L/m2 ·h, and the separation efficiency was 91.87 %. Compared with the low flux and low separation efficiency of pure hydrophobic membrane and pure hydrophilic membrane, Janus membrane has better separation effect on oil-water emulsion. |
Funds: |
国家自然科学基金地区基金(21968008, 21566007);广西自然科学基金(2018GXNSFAA050025) |
AuthorIntro: |
邓成雨(1995-),女,重庆,硕士研究生,研究方向为高分子材料膜制备及膜分离方向 |
Reference: |
[1] Ullah A, Tanudjaja H J, Ouda M, et al. Membrane fouling mitigation techniques for oily wastewater: A short review [J]. Journal of Water Process Engineering, 2021, 43: 102293. [2] 徐昆鹏. 含油废水处理方法的研究现状及展望 [J]. 化工管理, 2021, 36(24): 21-22. [3] Zheng W, Huang J, Li S, et al. Advanced materials with special wettability toward intelligent oily wastewater remediation [J]. ACS Applied Materials & Interfaces, 2021, 13(1): 67-87. [4] Saad M, Kamil M, Abdurahman N, et al. An overview of recent advances in state-of-the-art techniques in the demulsification of crude oil emulsions [J]. Processes, 2019, 7(7): 470. [5] Abdulredha M M, Hussain S A, Abdullah L C, et al. Water-in-oil emulsion stability and demulsification via surface-active compounds: A review [J]. Journal of Petroleum Science and Engineering, 2022, 209: 109848. [6] Ge J, Zhang J, Wang F, et al. Superhydrophilic and underwater superoleophobic nanofibrous membrane with hierarchical structured skin for effective oil-in-water emulsion separation [J]. Journal of Materials Chemistry A, 2017, 5(2): 497-502. [7] Gupta R K, Dunderdale G J, England M W, et al. Oil/water separation techniques: a review of recent progresses and future directions [J]. Journal of Materials Chemistry A, 2017, 5(31): 16025-16058. [8] 郭研,肖尊东. 乳化状含油废水难处理的物化原因探析 [J]. 吉林省教育学院学报: 上旬, 2015, 30(1): 149-150. [9] 王强,耿春香. 含油污水的膜法处理应用及膜污染控制 [J]. 净水技术, 2016, 35(2): 16-20. [10] 孙颖. 膜分离材料在含油废水处理中的研究进展 [J]. 广东化工, 2018, 45(8): 176-177. [11] 郭辉,蒋兰英. 高聚物膜辅助油水乳化液分离研究进展[J]. 膜科学与技术, 2022, 42(1):170-179. [12] Padaki M, Murali R S, Abdullah M S, et al. Membrane technology enhancement in oil–water separation. A review[J]. Desalination, 2015, 357: 197-207. [13] Li X, Cao M, Shan H, et al. Facile and scalable fabrication of superhydrophobic and superoleophilic PDMS-co-PMHS coating on porous substrates for highly effective oil/water separation [J]. Chemical Engineering Journal, 2019, 358: 1101-1113. [14] Chudasama N A, Polisetti V, Maity T K, et al. Preparation of seaweed polysaccharide based hydrophobic composite membranes for the separation of oil/water emulsion and protein [J]. International Journal of Biological Macromolecules, 2022, 199:36-41. [15] 薛娟琴,王森,韩小龙,王玉琪,李继定. 氧化石墨烯/聚偏氟乙烯杂化超滤膜处理乳化含油废水的研究[J]. 膜科学与技术, 2017, 37(05):28-35. [16] 秦佳旺,谢锐,巨晓洁,等. 支撑层强化聚偏氟乙烯复合膜的表面浸润性及油水分离性能研究[J]. 膜科学与技术, 2021, 41(05):26-34+50. [17] 章畅,王巧英,吴志超. 亲水/水下超疏油的油水分离膜的制备及性能 [J]. 净水技术, 2019, 38(02):86-92. [18] 钱明,孟娇,郎万中. 海藻酸钙改性聚偏氟乙烯静电纺丝膜用于油水乳液的自重驱动分离[J]. 膜科学与技术, 2022, 42(02):89-94. [19] 许飞,尤蒙,张树友,等. 聚偏氟乙烯接枝共聚物纤维膜的制备及油水分离研究[J]. 膜科学与技术, 2022, 42(01):88-97. [20] Wang M, Xu Z, Hou Y, et al. Fabrication of a superhydrophilic PVDF membrane with excellent chemical and mechanical stability for highly efficient emulsion separation [J]. Separation and Purification Technology, 2020, 251: 117408. [21] Lv Y, Ding Y, Wang J, et al. Carbonaceous microsphere/nanofiber composite superhydrophilic membrane with enhanced anti-adhesion property towards oil and anionic surfactant: membrane fabrication and applications [J]. Separation and Purification Technology, 2020, 235: 116189. [22] Li H N, Yang J, Xu Z K. Asymmetric surface engineering for Janus membranes [J]. Advanced Materials Interfaces, 2020, 7(7): 1902064. [23] Duan Y, Zhao X, Sun M, et al. Research Advances in the Synthesis, Application, Assembly, and Calculation of Janus Materials [J]. Industrial & Engineering Chemistry Research, 2021, 60(3): 1071-1095. [24] Lv Y, Li Q, Hou Y, et al. Facile preparation of an asymmetric wettability Janus cellulose membrane for switchable emulsions’ separation and antibacterial property [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 15002-15011. [25] Lin Y, Salem M S, Zhang L, et al. Development of Janus membrane with controllable asymmetric wettability for highly-efficient oil/water emulsions separation [J]. Journal of Membrane Science, 2020, 606: 118141. [26] Zhang W, Li X, Qu R, et al. Janus membrane decorated via a versatile immersion-spray route: controllable stabilized oil/water emulsion separation satisfying industrial emission and purification criteria[J]. Journal of Materials Chemistry A, 2019, 7(9): 4941-4949. [27] Gu J, Xiao P, Chen J, et al. Janus polymer/carbon nanotube hybrid membranes for oil/water separation[J]. ACS applied materials & interfaces, 2014, 6(18): 16204-16209. [28] Zuo J H, Gu Y H, Wei C, et al. Janus polyvinylidene fluoride membranes fabricated with thermally induced phase separation and spray-coating technique for the separations of both W/O and O/W emulsions[J]. Journal of Membrane Science, 2020, 595: 117475. [29] Pornea A M, Puguan J M C, Deonikar V G, et al. Robust Janus nanocomposite membrane with opposing surface wettability for selective oil-water separation[J]. Separation and Purification Technology, 2020, 236: 116297. [30] Wu M B, Yang H C, Wang J J, et al. Janus membranes with opposing surface wettability enabling oil-to-water and water-to-oil emulsification[J]. ACS applied materials & interfaces, 2017, 9(6): 5062-5066. [31] Yang C, Han N, Han C, et al. Design of a Janus F-TiO2@ PPS porous membrane with asymmetric wettability for switchable oil/water separation[J]. ACS applied materials & interfaces, 2019, 11(25): 22408-22418 [32] Zhang X, Wei C, Ma S, et al. Janus poly (vinylidene fluoride)-graft-(TiO2 nanoparticles and PFDS) membranes with loose architecture and asymmetric wettability for efficient switchable separation of surfactant-stabilized oil/water emulsions[J]. Journal of Membrane Science, 2021, 640: 119837. [33] 张贤,母情源,任琳琳,等. 单面超疏水单面亲水 Janus-CA 纤维膜的制备及其油水分离性能 [J]. 浙江理工大学学报: 自然科学版, 2020, 43(3): 283-292. [34] Yan X, Xiao X, Au C, et al. Electrospinning nanofibers and nanomembranes for oil/water separation[J]. Journal of Materials Chemistry A, 2021, 9(38): 21659-21684. [35] Liang Y, Kim S, Kallem P, et al. Capillary effect in Janus electrospun nanofiber membrane for oil/water emulsion separation[J]. Chemosphere, 2019, 221: 479-485. [36] Tao M, Xue L, Liu F, et al. An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation [J]. Advanced Materials, 2014, 26(18): 2943-2948. [37] Tao M, Liu F, Xue L. Persistently hydrophilic microporous membranes based on in situ cross-linking [J]. Journal of Membrane Science, 2015, 474: 224-232. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号